
© Feabhas 2014

Secure is the New Smart

25 top tips for hardening the application layer

in your Linux device

Author: Nick Glynn, Embedded Linux and Technical

Consultant at Feabhas

The Linux Security Onion

© Feabhas 2014

Secure is the New Smart

The Internet of Things (IoT) offers endless possibilities for smart devices

and their applications. So it’s no wonder that the IoT is as equally tempting

to hackers, as it is to developers, keen to showcase their latest

developments. A lack of current issues doesn't mean you're OK – you're

probably just not being targeted yet!

This paper is designed to help anyone who is developing an internet-

enabled Linux device for personal or business use. It highlights the main

areas to consider and provides a practical checklist for developing

applications for Embedded Linux.

What’s the all fuss about?

Linux -based systems are increasingly used in networked devices, as Linux offers a solid POSIX base for

API and other conventions, supports a permissions model conducive to a secure system and has

industry-wide support.

The ability to create and remotely manage smart devices for utility services, traffic control, or reading

meters can have very positive application benefits for business and personal use – however, there are

some drawbacks.

High cost of development

From a business perspective, smart devices come at a cost and are much more expensive than their

‘dumb’ counterparts. For example, the price of a WiFi LED light bulb is almost 50 times the price of a

standard LED equivalent (and 500 times the price of a non LED bulb).

To make these smart products attractive despite the wide cost differential, they need to provide

either substantial unique consumer benefits (such as unrivalled convenience or even the kudos of

being an early adopter) or significant operational cost savings (such as removing the need to take

personal meter readings).

Security compromises

The next logical step towards success in the mass-market will be to narrow the price gap. Lower prices

will lead to increasing competition and product designers and manufacturers looking for ways to

lower the cost of development or improve economies of scale. In some cases, the desire to get to

market quickly or cut costs may result in product de-scoping – either of which may adversely affect

the attention paid to device security.

Hackers have already proven that Wi-Fi light bulbs, baby monitors and even pacemakers can be

vulnerable to attack. Whilst the roll out of smart meters will enable energy companies to make

significant operational cost savings, it is not unthinkable that hackers could find a way to switch all of

the meters off – leaving thousands of homeowners and businesses without energy in an all too literal

Denial of Service. Not only would the reputational damage be enormous but the costs of addressing

the issue would be even more significant than the savings that had been generated. The security

© Feabhas 2014

breach would need to be identified, solutions determined (for immediate fix and a more permanent

solution, if required) and customers would need to be reconnected - as safety standards require each

meter to be switched on manually (necessitating an engineer’s visit)! At best this may cause a few

customers minor issues, at worst, it could cut energy to millions of customers and jeopardise the

business.

But it’s not just organisations designing and developing devices with embedded systems; many

thousands of enthusiasts and students are looking to put their own Linux-based devices online – and

they can be just as vulnerable!

Every program is a potential target. Vulnerabilities can be found and used to:

 Crash your software

 Learn your secrets

 Gain control – whether that’s to show off or to use your product maliciously

Therefore, it makes sense to build in security from the start.

The Linux security onion

There are various layers that need to be considered in the ‘Linux security onion’.

 The network layer – the connected environment such as the

internet or IoT

 The environment layer – the Linux operating system

 The application layer – the device’s physical system, code

and application scripted onto the device by the developer

Securing a device means understanding how and why problems

occur and how to address each of these specific layers. For

example, C and C++ are not secure languages – they can be subject

to format string attacks, buffer overflows or stack and heap

overflows - but they are the defacto choice for development on

Linux.

Even using a high level language such as Python does not mean

that developers can be complacent and assume they are safe from

malicious actors. Developers need to take more effective action to

secure their devices online.

The Zen of Hacking

There are a few simple ways that a device can be hacked.

Firstly, it is possible to trick the device into consuming more input than it allocated memory for, to

cause a buffer overflow. Once the buffer that lives on the program overflows either:

 the stack is ‘smashed’. This allows an overwrite to another stack variable which can be used to

take control of the device - often by aiming the CPU at memory you don't control; or

 the heap is corrupted by fooling the system about how it tracks memory. Once corrupted, it is

possible to trick the program into writing to arbitrary places in the memory.

© Feabhas 2014

Security checklist

The following tips provide a useful checklist for developers wanting to secure the application layer in

the Linux security onion.

Authentication and some best practice suggestions

1. Use an authentication mechanism that cannot be bypassed or tampered with. When

implementing authentication, ensure that it cannot be bypassed trivially - hardcoded passwords

cause issues all the time, as well as "secret" admin pages for web enabled devices where you

only need to know the URI

2. Make sure you authorize after you authenticate. Understand the difference between

authorisation and authentication and what that means on your platform: Authorisation - What

the user can do (Discretionary/Mandatory access controls, read/write access to files etc).

Authentication - Who the user is (Username + SSH Keys/Password)

3. Strictly separate data and control instructions, and never process control instructions received

from untrusted sources. If you require privileged status to perform functionality - separate the

reading/writing of the raw data from the parsing/logic. This prevents bugs and exploits in the

data processing side (think XML, JPEG etc) from interfering with the control logic. This is

paramount when handling data from unverified sources.

4. Define an approach that ensures all data are explicitly validated and identify sensitive data and

how they should be handled. Following on from the previous point - always validate and verify

the files entering your system - If you're processing an XML file which consists of a million

nested elements, what will happen to your parser? Consider a verification/fuzzing strategy and

assume hostile intent!

5. Understand how integrating external components changes your attack surface. The more

components added to your system, the larger your attack surface. Think about what happens if

you add USB support, do bugs in the USB stack open you up to unexpected strategies? What

about userspace applications? Consider these effects when competing in the features race.

6. Be flexible when considering future changes to objects and actors. Take the view that some of

the software on your platform will have flaws and it may not always be in the controlled

conditions it was originally designed for - always consider an upgrade/patch strategy for your

embedded devices

7. Use “safe” string functions. For example, avoid ‘strtok’ and use ‘strtok_r’ or ‘strtok_s’ with -

std=c11 instead, in order to prevent buffers being modified or performing ‘out of character’

8. Always know the size of the string and allocate a string large enough to hold the output,

including NULL

9. Be wary of NULL and control characters in data you're handling

10. Know the memory model – who allocates, who frees – the caller or the callee?

11. Always allocate enough memory for the expected input and watch out for magic numbers or

out of range values!

Architecture and data tips

12. Knowing how your architecture works is fundamental to understanding how it can be used

against you – sometimes it can be fun to have a “breakdown session” to see how secure your

product is.

© Feabhas 2014

13. Shellcode isn't that hard to write... when you know how. Take some time to learn how to at

least read it and how it works

14. GDB and objdump are free and highly powerful tools – learn how to use them to understand

not what your code should do but what it can do.

15. New exploit techniques are always being developed – stay on top of them by tracking the CVE

lists and ensure you have an update strategy.

16. Always check what data you're being given – eg. gif/jpeg/mp3/wav etc – Do you trust the values

given to you? What does your code do when it opens a JPEG that's -100000 by -1000000?

Language, file paths and other coding tips

17. C and C++ are not secure languages so remember to do formal verification when using them –

bonus points if it's part of your continuous integration strategy

18. Even understanding how a binary gets into memory in the first place will give you an advantage

over other programmers

19. Try not to hard code values - what if you update in one location and not the other?

20. Remember that all command line arguments are in control of the user launching it – are you

using getopt or have you rolled your own? Is it secure?

21. Be careful about working with shared files - Who else can read/write to the file?

22. Filepaths can contain .. and ... so be wary of directory traversal attacks

23. Think about file operations. For example, try to avoid API calls that take a path name and prefer

those that take a file descriptor instead – this will help mitigate race conditions. And watch out

for hard/soft links

24. Don't be afraid to use open-source libraries - Most are under the LGPL which allows dynamic

linking without requiring you to open-source your code.

25. Learn what tools are available for your environment – if you aren't willing to discover them,

there's a hacker or saboteur, who will!

© Feabhas 2014

Summary - Don’t just ship it - Understand it!

We hope this paper provides some useful insights into why it’s important to

secure your device and demonstrates that any device can be vulnerable.

Following these 25 tips for the securing Linux application layer should help

you to define an approach that ensures your data is explicitly validated, the

software well written and as a result, that you are more confident in the

security of your device.

Of course, there is much more a developer can do to ensure that a Linux-

based device has greater security online – and essentially, the more you know

about your product; the more you can secure it.

If you’d like to learn more about how you can improve the embedded Linux

software and security skills for your business or for yourself, please contact us

on +44 (0) 1793 792909 or at info@feabhas.com.

References:

1. AVOIDING THE TOP 10 SOFTWARE SECURITY DESIGN FLAWS (IEEE 2014)

“Security is

something you

have to factor in

early – it's not a

“bolt on”.

It's your personal

reputation and

company’s brand

on the line.”

mailto:info@feabhas.com?subject=Enquiry%20from%20Linux%20secuity%20white%20paper

© Feabhas 2014

About Feabhas

Feabhas improves the competence of embedded software developers through on-site team

development, public training for individual engineers, consultancy and mentoring, as well as pre- and

post-course assessments.

Feabhas was formed in 1995 and has trained over 15,000 engineers worldwide to date, helping them

to improve their embedded software competency and reduce software development times and costs.

As an ARM Approved Training Centre and provider of ARM Accreditation Training, Feabhas is one of

two ARM accredited training partners that offers on-site ARM Accredited Engineer (AAE) programmes

in Asia, the Americas and Europe.

Feabhas help with developing software standards e.g. DO-178C, ISO 26262, IEC 62304, EN 50128 etc.,

graduate training program and re-skilling from other disciplines.

Nick Glynn has a background in embedded software and began his

career at Intel. He joined Feabhas in 2012 and is responsible for

developing and delivering course material for Linux based training on

Kernel/User space and the Android platform in the UK and across the

globe. This includes the recently launched “Secure Linux

Programming” course.

Nick is also a Consultant on Linux strategies in the embedded space.

© Feabhas 2014

For more information about Linux consultancy, programming courses or

other security and training requirements, please contact us.

Phone: +44 (0) 1793 792909

E-mail: info@feabhas.com

www.feabhas.com

http://www.feabhas.com/

