SECTION 06

Mutual Exclusion

Overview of C++ 2011

© Feabhas Ltd 2012

Producer-Consumer threads

C

{
p

p

p

¥

\'

{

lass Producer
class Consumer

{
public:
Consumer(myStack& s): sum(®), stack(s){}

ublic:
Producer(myStack& s): sum(®), stack(s){}

rotected:

void operator()(); protected:

void operator()();

rivate:
int sum;
SimpleStack& stack;

private:
int sum;
SimpleStack& stack;

. ¥

AE PREEIEER S SRR void Consumer: :operator()()

for(int i = @; 1 < 1000; ++i)
{

stack.push(i);

sum += i;
¥

cout << "Produced:

for(int i = 8; i < 1000; ++1)
{

int val = stack.pop();

sum += val;

}

cout << "Consumed:

}

<< sum << endl;

<< sum << endl;

In this example we have two thread classes - a Producer, which creates data
and inserts it onto a stack; and a Consumer, that retrieves data from a stack.

This pattern is very typical in embedded systems; particularly where the
Producer and Consumer runs at different rates.

Overview of C++ 2011

© Feabhas Ltd 2012

Thread-unsafe Stack class

SimpleStack:: SimpleStack(): count(@)

{
¥

class SimpleStack

{

public:
SimpleStack();
bool push(int val);
int pop();

memset(stack, @, sizeof(stack));

bool SimpleStack::push(int val)
{
if (count < size)

{
stack[count++] = val;
return true;

}

return false;

}

private:
static const uint32_t size = 1000;
int stack[size];
uint32 t count;

}s

int SimpleStack: :pop()
{
if (count != @)

Are there issues
with using this class
in a multi-threaded }

environment? ; RALFD =4l

int val = stack[--count];
return val;

Above is a basic stack implementation. The stack is a simple array. The
count member is used to ensure data isn't inserted onto a full stack; or read
from an empty stack.

Overview of C++ 2011

© Feabhas Ltd 2012

Problems with shared resources

stack

Consumer Producer

--count ++count
——————— count e [FNPE

LDR R1,[count]
ADD R1,R1,#06x01
STR R1,[count]

--count

LDR R1,[count]
SUB R1,R1,#0x01
STR R1,[count]

The problem arise with two threads both trying to manipulate a commonly-
shared resource.

In this example the Producer and Consumer could both attempt to adjust
the count value at the same time. The OS schedules operations at the
opcode level, so a context switch could occur at any point during the read-
modify-write cycle.

Overview of C++ 2011

© Feabhas Ltd 2012

std::mutex class declaration

class mutex

{

public:
mutex(mutex const&) = delete;
mutex& operator=(mutex const&) = delete;
mutex();

~mutex();

void lock();
void unlock();
bool try_ lock();

The std: :mutex class provides a basic mutual exclusion and synchronization
facility for threads which can be used to protect shared data.

lock() is a blocking call which will suspend the calling thread if the mutex is
unavailable (locked by another thread). When the mutex is released (with
unlock()) any waiting thread will be scheduled.

In cases where you don't wish to block you can call try_lock() which will
return true is the lock has been acquired; otherwise false.

Note the mutex cannot be copied.

Overview of C++ 2011

© Feabhas Ltd 2012

Protecting the SimpleStack class

#include <mutex>

class SimpleStack

{

public:
SimpleStack();
bool push(int val);
int pop();

private:
static const uint32_t size
int stack[size];
uint32_t count;
std: :mutex mtx;

1000;

bool SimpleStack::push(int val)

{

}

bool retval = false;
mtx.lock();
if (count < size)

// LOCK

stack[count++] = val;

retVal = true;
mtx.unlock(); // UNLOCK
return retVal;

int SimpleStack: :pop()
i

int val = -1;
mtx.lock();

if (count != @)
{

val = stack[--count];

// LOCK

mtx.unlock(); // UNLOCK

return val;

The mutex is locked and unlocked as part of the push () and pop()

functions.

Overview of C++ 2011

© Feabhas Ltd 2012

C++11 mutual exclusion classes

class mutex:
class recursive_mutex;
class timed_mutex;

class recursive_timed_mutex;

The std: :mutex class provides a basic mutual exclusion and synchronization
facility for threads which can be used to protect shared data.

std::recursive_mutex is recursive so a thread that holds a lock on a
particular instance may make further calls lock () or try_lock() to
increase the lock count.

The std: :timed_mutex class provides support for locks with timeouts on
top of the basic mutual exclusion and synchronization facility provided

by std: :mutex. If a lock is already held by another thread then an attempt
to acquire the lock will block until the lock can be acquired or the lock
attempt times out (try_lock_for() ortry_lock_until()).

Overview of C++ 2011

© Feabhas Ltd 2012

Danger of deadlock

int SimpleStack: :pop()

{
mtx.lock();

if (count != @)
{

int val = stack [--count];
mtx.unlock();
return val;

}

return -1;

}

One weakness is that locks and unlocks must be paired If an unlock is not
called (e.g. exceptions, missed return path) the code will potentially
deadlock.

In the example, if count == @ then the mutex is not unlocked!

Overview of C++ 2011

© Feabhas Ltd 2012

std::lock_guard

template <class Mutex>
class lock_guard
{
public:
typedef Mutex mutex_type;

lock _guard();
explicit lock guard(mutex_type& m);
lock guard(mutex_type& m, adopt lock t);

lock_guard(lock guard const&) = delete;
lock_guard& operator=(lock_guard const&) = delete;

In the previous example there was the potential of leaving a mutex locked
accidentally. This risk can be substantially reduced by making use of the RAll
/ RDID model (see the section on Resource Management for more
information). This technique is sometimes referred to as the Scope-Locked
Idiom (See Pattern Oriented Software Architecture Volume 2, p.325 for
more)

A std::lock_guard object locks on construction and unlocks on
destruction.

Overview of C++ 2011

© Feabhas Ltd 2012

10

Using a std::lock_guard

int SimpleStack::pop()
{

std::lock_guard<std: :mutex> guard(mtx);

if (count != @)
{
return stack[--count];
1
return -1;
} // UNLOCK

bool SimpleStack::push(int val)
{
std::lock_guard<std: :mutex> guard(mtx);
if (count < sz)
{
stack[count++] = val;
return true;

Mutex is 3
guaranteed to be return false;
} // UNLOCK

unlocked on exit

By scoping the guard object the mutex is guaranteed to be unlocked.

It is bad practice to hold a mutex for too long. You should keep the 'locked'
code as small as possible. However, the structure of your code could mean
there is a lot of code between the lock and the end of the scope (function).

One solution is to put the guard in its own scope to limit its lifetime.

Overview of C++ 2011

© Feabhas Ltd 2012

11

Key Points

Resources shared between two or more threads should
be protected against corruption due to thread race
conditions

A std::mutex class is used to abstract away from OS-
specific mutual exclusion mechanisms

A std::lock_guard object can be used to ensure that
Mutexes are always unlocked safely. This is known as
the scope-locked idiom

Overview of C++ 2011

© Feabhas Ltd 2012

