SECTION 05

Threading

Overview of C++ 2011

© Feabhas Ltd 2012

Threading approaches

1. Thread-Runs-Function

2. Thread-Runs-Callable-Object

C++11 supports two different approaches, based on the same API.

Overview of C++ 2011

© Feabhas Ltd 2012

Thread-Runs-Function

class thread

{
public:
template<typename Callable>

explicit thread(Callable func);

// More...
}s

The std: :thread class expects a function address (pointer-to-function)
that can be used as the thread function.

The user must supply the function to execute in its own thread of control.

Overview of C++ 2011

© Feabhas Ltd 2012

Using Thread-Runs-Function

#include <iostream>
#include <thread>

void myThreadFunction()

{

for(int i = @; i<100; ++i)

}

std::cout << “x’;

int main()

{
¥

std: :thread ti1(&myThreadFunction);

Threads are created by supplying the address of the function.

Overview of C++ 2011

© Feabhas Ltd 2012

Waiting for a thread to finish

class thread

{

public:
template<typename Callable>
explicit thread(Callable func);

/] ...
void join();

/] ...
i

We don’t want main to end before any created thread has finished as this
leads to undefined behaviour.

We want main to wait until our thread has finished; this is called 'joining';
from the concept for 'fork-and-join'.

std: :thread supports a join() function.

Overview of C++ 2011

© Feabhas Ltd 2012

Using join

#include <iostream>
#include <thread>

void myThreadFunction()
{
for(int i = @; i<100; ++i)
{
std::cout << “x’;
}
}

int main()

{

std: :thread t1(myThreadFunction);
tl.join();
}

main will not terminate until t1 has completed.

Overview of C++ 2011

© Feabhas Ltd 2012

Thread with arguments

class thread

{

public:
template<typename Callable>
explicit thread(Callable func);

template<typename Callable, typename Args...

thread(Callable func, Args... args);
/-
void join();

£

A variadic template allows a template function with a variable number of
types. Typically the types are deduced from the types of the supplied
parameter(s).

Overview of C++ 2011

© Feabhas Ltd 2012

Thread with single-argument

#include <iostream>
#include <thread>

void myThreadFunction(char c)
{
for(int 1 = 9; i<100; ++i)
{

std::cout << c;

s
}

int main()

{

std: :thread t1(myThreadFunction, '1'
std: :thread t2(myThreadFunction, '2');

tl.join();
t2.join();

When the thread object is created the parameters are used to create a
std: :function that holds the thread function. Note, the parameter type
supplied must match the parameter type of the thread function (since it is

used for template argument deduction).

(For more information on std: : function, see Appendix L)

Overview of C++ 2011

© Feabhas Ltd 2012

Multiple arguments

#include <iostream>
#include <thread>

void myThreadFunction(char c, int count)
{

for(int i = @; i < count; ++i)

{

std: :cout << c;

Iy
}

int main()

{
std::thread ti(myThreadFunction, '1', 60);
std: :thread t2(myThreadFunction, '2', 88);

t1.join();
t2.j0in();

Because of the use of a variadic template on the thread constructor the
std: :thread class can support any number of parameters.

Overview of C++ 2011

© Feabhas Ltd 2012

10

Using a class member function

class ThreadedObject

{

public:
ThreadedObject(char c): ch(c) {}
void run() const;

private:
char ch;

3s

void ThreadedObject::run() const
ontint oot 1 < 100s Must pass
or(int i=6; 1 < 160; ++i) address of object

{ :
std::cout << ch; as first parameter

}

} int main()

ThreadedObject obj('.");
std::thread t1(&ThreadedObject::run, &obj);

tl.join();

¥

Similarly, we can use a member function on a class. This is similar to the
Thread-Runs-Polymorphic-Object pattern, but we have flexibility in which
function is called.

Note, because a std: : function is (effectively) a generic pointer-to-
function we must supply the object's address explicitly as a parameter.

Overview of C++ 2011

© Feabhas Ltd 2012

11

Thread-Runs-Functor

#include <iostream>

class ThreadedFunctor

{

public:
ThreadedFunctor(char c¢) : ch(c) {}
void operator()() const;

private:
char ch;

s

void ThreadedFunctor: :operator()() const
{
for(int i=0; i<100;++i)
{
std: :cout << ch;
¥
¥

Remember: overloading operator() allows an object to be called as if it
were a function (it becomes a callable object - see Appendix L for more
details)

Overview of C++ 2011

© Feabhas Ltd 2012

12

Using Thread-Runs-Functor

#include <thread>

int main()

{
ThreadedFunctor functorObjl('1');
ThreadedFunctor functorObj2('2');

std: :thread t1(functorObjl);
std::thread t2(functorObj2);

til.join();
t2.join();

This is essentially the same as Thread-Runs-Polymorphic-Object (from a
client's perspective) c.f. Appendix H

Overview of C++ 2011

© Feabhas Ltd 2012

13

Thread Functor - alternative

#include <thread>

int main()

{

std::thread t1((ThreadedFunctor('1')));

std::thread t2 = std::thread(ThreadedFunctor('2'));

t1.join();
t2.join();

If you're wondering about the extra parentheses around
the ThreadedFunctor constructor call, this is to avoid what's known
as C++'s most vexing parse.

Without the parentheses, the declaration is taken to be a declaration of

a function called t1 which takes a pointer-to-a-function-with-no-parameters-
returning-an-instance-of-ThreadedFunctor, and which returns
astd::thread object; rather than an object called t1 of

type std: :thread (which is what you would expect)

Overview of C++ 2011

© Feabhas Ltd 2012

14

Functor with parameters

#include <iostream>

class FunctorWithParams

{

public:

FunctorWithParams (char c): ch(c) {}
void operator()(int count) const;

private:
char ch;

1

void FunctorWithParams::operator()(int count) const
{

for(int i=0; i < count; ++i)

{

std::cout << ch;

}
}

Since operator () is just another member function it can have parameters.

Overview of C++ 2011

© Feabhas Ltd 2012

Using functors with parameters

#include <thread>

int main()
{
FunctorWithParams functorObjil('1"');
FunctorWithParams functorObj2('2');

std::thread ti(functorObji, 60);
std: :thread t2(functorObj2, 89);
std: :thread t3((FunctorWithParams('3')), 90);

t1.join();
t2.join();

15

One does have to question why pass parameters to the thread object if you
have a functor (with its own state)

Overview of C++ 2011

© Feabhas Ltd 2012

16

Key points

std::thread provides independent units-of execution

A std:thread can be created with any callable object
allowing it to model the following threaded patterns
Thread-Runs-Function
Thread-Runs-Object

std::thread relies on the client-supplied function or object
for its scheduling policy; unlike the Thread-Runs-
Polymorphic-Object pattern

Overview of C++ 2011

© Feabhas Ltd 2012

