SECTION 04

Function objects

Overview of C++ 2011

© Feabhas Ltd 2012

Lambdas

A lambda is a locally-defined function
object (functor)

Lambdas reduce a lot of the work
required in creating ad-hoc functor
classes

The basic form of a lambda is:

[<Capture Llist>] (<Parameter List>) -> <Return type> {<Function body>}

Lambdas allow the programmer to define a function (strictly, a functor)
locally, within block scope.

Overview of C++ 2011

© Feabhas Ltd 2012

Bespoke function objects

class X

{
public:
void op() { cout << "X::op()" << endl;}

]

class Functor

{
public:
void operator() (X& elem) { elem.op(); }

};

int main()

{
vector<X> v;
v.push_back(X());
v.push_back(X());
Functor f;

for_each(v.begin(), v.end(), f);

With STL algorithms the processing on each element is performed by a user-
supplied unary or binary functor object. For common operations, the STL-
supplied functors can be used (for example std: :divides), but for bespoke
manipulations a bespoke function or functor must be created.

A functor is a class that provides an implementation of operator().

In the case of functors used with the STL algorithms the operator()
function must take either one parameter (for a unary procedure) or two
parameters (for binary procedures) of appropriate types.

Creating bespoke functors can be a lot of effort; especially if the functor is
only used in one specific place. These bespoke functors also unnecessarily
‘clutter up' the code.

Overview of C++ 2011

© Feabhas Ltd 2012

A basic lambda

class X
{
public:
void op() { cout << "X::op()" << endl;}
3

int main()

{
vector<x> v;
v.push_back(X());
v.push_back(X());

for_each(v.begin(), v.end(), [](X& elem) -> void { elem.op(); });
}

The lambda is passed each element in
turn as a parameter

A lambda is defined inline, where you would normally reference a functor or
call a function. The brackets ([]) mark the declaration of the lambda; and it
should be followed by its body (the same as any other function).

Note the lambda uses a trailing return type declaration. This is (no doubt) to
simplify parsing (since types are not valid function parameters)

Overview of C++ 2011

© Feabhas Ltd 2012

Lambdas may have parameters

[](X& elem) { elem.op(); }

A lambda may have parameters, just like a normal function.

When the lambda is called the parameters are passed using the standard ABI
mechanisms. One difference between lambdas and functions: Lambda
parameters can't have defaults.

Overview of C++ 2011

© Feabhas Ltd 2012

Lambda return types

class X

{

public:

void op();
int getVal();
s

int main()

{
vector<X> v;
v.push_back(X());
v.push_back(X());

for_each(v.begin(), v.end(), [](X& elem) { elem.op(); });

auto i = find if(v.begin(), v.end(),
[1(X& elem)->bool
{
return (elem.getVal() != @);

)

Lambdas may return values to the caller.

Lambdas must use the trailing return type syntax.

The return type may be omitted if:
* The return type is void

¢ The compiler can determine the return type (lambda body is return
<type>;

Overview of C++ 2011

© Feabhas Ltd 2012

Block-scope functions

void func()

{
auto lambda = [](int a) -> int // MUST use auto since the lambda

{ // is compiler-generated and
return a - 1; // therefore has an unknown type

};

int i = lambda(109); // Now you can call the lambda
// just like a normal function.

int main()

lambda(1e9); // ERROR! lambda is not in scope

}

A lambda has a type and can be stored. However, the type of the lambda is
only known by the compiler (since it is compiler-generated), so you must use
auto for declaration instances of the lambda. (You can think of the type of a
lambda as a special case of pointer-to-function)

Lambdas allow ad-hoc functions to be declared at block scope (something
that was illegal before) The lambda function (functor) is only available within
the scope of func() in this example; unlike a function, which would have
global (or file) scope.

Overview of C++ 2011

© Feabhas Ltd 2012

Capturing the context

int main()
The 'context' is the [
set of objects in

scope // Add elements to the vector..

vector<X> v;

int i = 10;

for_each(v.begin(), v.end(),
[1i](X& elem)
{

cout << elem.getVal() * i << endl;

‘Capture' i by value),}

}

lambda has a local
copy, notthe
original

The context of a lambda is the set of objects that are in scope when the
lambda is called. The context objects may be captured, then used as part of
the lambda's processing.

Care must be taken because the lambda's lifetime may exceed that of its
capture list.

Capturing an object by name makes a lambda-local copy of the object.

Overview of C++ 2011

© Feabhas Ltd 2012

Capturing objects by reference

int main()
{
vector<X> v;
// Add elements to the vector..

int total = @;

for_each(v.begin(), v.end(),
Capture total by [&total] (X& elem)
reference {
total += elem.getVal();

)3

cout << total << endl;

Capturing an object by reference allows the lambda to manipulate its
context.

Be careful here, because a lambda's lifetime may exceed the lifetime of its
capture list. In other words, the lambda may have a reference to an object
no longer in scope!

Overview of C++ 2011

© Feabhas Ltd 2012

10

Capturing the whole context

int i;

double d;

X theX;

std: :vector<double> v(1000);

auto laml = [&]() { /* code.. */ }; // Capture everything in the
// context by reference.

auto lam2 [=]1() { /* code.. */ }; // Capture everything in the
// context by value.

All variables in scope can be captured (but be careful of the overheads of
doing so) - the compiler must make copies of all objects (including copy
constructors), or keep references for every object that is currently in scope.

Overview of C++ 2011

© Feabhas Ltd 2012

Under the hood

User code

[&total, offset](X& elem) { total += elem.getl() + offset; }

Compiler generated

class lambdaeel
{
public:
lambda@el(int& t, int o) : total (t), offset (o) {}
void operator() (X& elem) {total_ += elem.getVal() + offset_;}

private:
int& total_; // Context captured by reference
int offset_; // Context captured by value

1

11

The compiler generates an ad-hoc function object for each lambda you
declare. The functor name is compiler-generated (and probably won't be
anything human readable)

This is why you must use auto for declaring the type of a lambda - only the
compiler knows the complete type declaration.

Overview of C++ 2011

© Feabhas Ltd 2012

Callable objects

A callable objectis any object

that can be called like a function:

A member function (pointer)
A free function (pointer)

A functor

A lambda

12

Callable object is a generic name for any object that can be called like a

function

Overview of C++ 2011

© Feabhas Ltd 2012

13

std::function

std: :function isa
generalised pointer-to-function
that can reference any callable
object.

std::function <<Return Type> (<Parameter List>)>

std: :functionis a template class that can hold any callable object that
matches its signature. std: : function provides a consistent mechanism for
storing, passing and accessing these objects.

std: :function can be thought of as a generic pointer-to-function that can
point at any callable object.

std: :functionis foundin the header <functional>

Overview of C++ 2011

© Feabhas Ltd 2012

14

Using std::function for call-back

#include <functional>

class SimpleCallback

{

public:
SimpleCallback (std::function<void(void)> f) : callback(f) {}
void execute();

private:
std: : function<void(void)> callback; // void (*callback)(void)

+s

void SimpleCallback::execute()

{
if (callback != nullptr) // Is the function valid?

callback(); // Call like a normal function

}
¥

std: :function provides an overload for operator== (and operator!=)
to allow it to be compared to nullptr (so it can act like a function-pointer)

Overview of C++ 2011

© Feabhas Ltd 2012

Using std::function for call-back

With functors...

class Functor

{
public:

void operator()() { cout << "Functor" << endl; }

b

int main() With functions...
{
Functor functor; void func()

SimpleCallback callback(functor); {

callback.execute(); cout << "Free function" << endl;
} }

int main()

SimpleCallback callback(func);
callback.execute();

}

.or with lambdas Bl s 0]
{
SimpleCallback callback([]() { cout << "Lambda" << endl; });

callback.execute();

}

15

The same SimpleCallback class can be used with any callable type -
functors, free functions or lambdas, without any change.

Overview of C++ 2011

© Feabhas Ltd 2012

16

Key points

Lambdas allow the ad-hoc created of functional objects
where they are needed

Lambdas allow the creation of block-scoped functions

Lambdas can interact with outside code by capturing the
local context, either by value or by reference

std::function acts as a generic pointer-to-function that
can point at any callable object

Overview of C++ 2011

© Feabhas Ltd 2012

