SECTION 03

Smart pointers

Overview of C++ 2011

© Feabhas Ltd 2012



Problems with 'raw' pointers

class X

{
}s

void func(X& theX)

{
theX = *(new X);

}

int main()

{
X& x = *(new X);
func(x);

}

Raw pointer types do not perform any management of their resource. This
can lead to all sorts of nasty problems.

Overview of C++ 2011

© Feabhas Ltd 2012



Smart pointer types
std: :shared ptr
std: :unique_ptr

std: :weak ptr

C++11 has three managed pointer types:

std: :shared_ptr

A reference-counted pointer, introduced in C++98 TR1

std::unique_ptr

Single-owner managed pointer which replaces (the now deprecated)
auto_ptr

std: :weak_ptr

Works with shared_ptr in situations where circular references could be a
problem

Overview of C++ 2011

© Feabhas Ltd 2012



Single ownership pointer

#include <memory>

class X

{
public:

void op();
}s

int main()
{
std: :unique_ptr<X> pl(new X); // NB: You can't do:
// std::iunique_ptr<X> pl = new X;
pl->0p();

std: :unique_ptr<X> p2(pl); // ERROR - Copy construction
std::unique_ptr<X> p3(std::move(pl)); // OK - move constructor called

unique_ptr allows single ownership of a resource. That is, only one
unique_ptr can ever be pointing at the resource

unique_ptr supports move semantics but not copying; unlike auto_ptr.

Overview of C++ 2011

© Feabhas Ltd 2012



Custom delete functor

class SpecialDeleter
{
public:
void operator() (SpecialCase* pObj)
{
cout << "Custom deleter for SpecialCase objects" << endl;
delete pObj;
}
1

int main()

{

std: :unique_ptr<SpecialCase, SpecialDeleter> p(new SpecialCase);

}

unique_ptr allows a custom delete functor; for situations requiring special
cleanup (for example, files)

The deletor functor operator() must take a pointer to the type referenced
by the unique_ptr

Overview of C++ 2011

© Feabhas Ltd 2012



Reference-counted pointer

#include <memory>

class X

{

public:

X(int val);
void op();

¥

void func(std::shared_ptr<X> p)

p->0p();

int main()

{
auto ptr = std::make_shared<X>(100);

ptr -> op();
func(ptr);
¥

Pass-by-value; copy made on call
ref count incremented

temp object deleted;
ref count decremented

Creates a new shared_ptr<X>.

Last shared_ptr goes out of
scope; delete memory.

std: :shared_ptr isareference-counted smart pointer.

Each time a shared pointer is copied the reference count is incremented.
Each time one of the pointers goes out of scope the reference count on the
resource is decremented. When the reference count is zero (that is, the last
shared_ptr referencing the resource goes out of scope) the resource is

deleted.

The standard library also provides a helper function, std: :make_shared,
that constructs a new resource (on the free store) and returns a
shared_ptrtoit. std::make_shared isatempate function that takes as
many parameters as required by the type being constructed

Overview of C++ 2011

© Feabhas Ltd 2012



Problems with circular references

class A;
class B;
void bind (std::shared ptr<A>& a, std::shared ptr<B>& b);

class A
{
public:
void opA() { cout << "A::opA()" << endl; }

private:
friend void bind (shared_ptr<A>& a, shared_ptr<B>& b);
std: :shared_ptr<B> pB;
¥
class B
{
public:
void opB() { cout << "B::opB()" << endl; }
void go();

Note the circular

reference private:
friend void bind (shared_ptr<A>& a, shared_ptr<B>&

b);

std: :shared_ptr<A> pA;
35

Here we have a common situation: Two classes with a bi-directional
association. We have modelled the association this time using shared_ptrs
rather than raw pointers.

The bind function allows us to connect objects together at construction
time. Note in this case the bind() function takes shared_ptrsas
parameters, rather than references to objects.

Overview of C++ 2011

© Feabhas Ltd 2012



Constructing the objects

void bind(std::shared ptr<A>& a,
std::shared ptr<B>& b)
{
a->pB
b->pA
b

int main()

{
auto pl = std::make_shared<A>();
auto p2 = std::make_shared<B>();

bind(pl, p2);

p2->go();
}

What's the problem with this code?

The bind function builds the association between the objects. The copy of
the shared_ptrsinside the bind() is what causes the problem: this code
will cause a memory leak!

But how?...

Overview of C++ 2011

© Feabhas Ltd 2012



Construction

Free Store

new A: bind: p1->pB = p2
Count, =1 Countg = 2

new B:

Countg =1

bind: p2->pA = pl
Count, = 2

Let's examine the problem.

When we construct the A and B objects we get two shared_ptrs: p1 and
p2. Their reference counts are set to 1.

The bind function makes copies of p1 and p2, in p2->pA and p1->pB
respectively. This increments the reference counts on the shared_ptrs.

There are now two shared pointers referencing each A or B object.

So far, there is no problem.

Overview of C++ 2011

© Feabhas Ltd 2012



10

Destruction...

Free Store

~pl:
Count, =1

~p2:

Countg = 1

When p1 goes out of scope its reference count is decremented. However,
since there is another shared_ptr referencing the resource (B: : pA) the A
object is not deleted.

Similarly, when p2 goes out of scope its reference count is decremented, but
the B object cannot be deleted since A: : pB still references it.

Now we have a problem: memory for A and B cannot be deleted since pA
and pB reference it; but they cannot be accessed any more (because p1 and
p2 are no longer in scope!)

The solution is to use a std: :weak_ptr

Overview of C++ 2011

© Feabhas Ltd 2012



11

std::weak_ptr

#include <memory>
void func(std::weak_ptr<int> p);

int main()

{

auto shared = std::make_shared<int>(100); shared ctor: count
std: :weak_ptr<int> weak(shared); weak ctor: count

*weak = 200; ERROR!
func(weak); weak copy: count =

weak dtor: count
shared dtor: count

void func(std::weak_ptr<int> p) p: count =1

if(!p.expired()) Is p valid?
{

std: :shared_ptr<int> temp(p); temp ctor: count
*temp = 200;

} temp dtor: count

} p dtor: count

A std: :weak_ptrisrelated to a shared_ptr. A std: :weak_ptr canbe
assigned to a std: : shared_ptr; but doing so does not increment the
reference count on the resource.

Since weak_ptrs can have a different lifetime to their associated
shared_ptr there is a chance the shared_ptr could go out of scope (and
delete its resource) before the weak_ptr is destroyed. Aweak_ptr can
therefore be invalid - that is, referencing a resource that is no longer viable.
You should use the expired() method on the weak_ptr to see if it is still
valid, before attempting to access it.

You cannot directly use a weak_ptr. You must convert it back to a
shared_ptr first.

Overview of C++ 2011

© Feabhas Ltd 2012



Resolving circular dependencies

class B

{
public:
void opB() { cout << "B::opB()" << endl; }
void go();

private:
friend void bind (shared_ptr<A>& a, shared_ptr<B>& b);
std: :weak_ptr<A> pA;

}s
void B::go()
if (!pA.expired()) // Check to see if pA
Either A or B(C”lbOth) ¢ std: :shared_ptr<A> ptr(pA); ;j ézn:iiigé a temporary
could use weak_ptrs // shared ptr to access

ptr->opA();

12

Using weak pointers solves our previous problem.

In this example you could make either, or both, pointers weak if you wish.

Overview of C++ 2011

© Feabhas Ltd 2012



13

Construction with weak_ptr

Free Store
Stack

new A: bind: p1->pB = p2
Count, =1 Countg = 2
pl
new B:
Countg = 1
p2

bind: p2->pA = pl
Count, =1

|

weak pointer

doesn't
increment the

reference
count

Since B uses a weak_ptr to associate with A, when the objects are bound
together the reference count for the A object remains a 1.

Overview of C++ 2011

© Feabhas Ltd 2012



14

Destruction with weak_ptr...

Free Store
Stack

Np]_: "‘A:
COUHTA =0 COUI’TtB =1
pl
~p2:
County = 0
p2
~B:

When p1is destroyed it decrements its reference count. Since B uses a
weak_ptr torefer to A, pl's reference count is decremented to zero; and
the A object is deleted.

As the A object is destroyed its shared_ptr (pB) goes out of scope,
decrementing the reference count (down to 1)

Now, when p2 is destroyed its reference count is decremented to zero; and
its resource is deleted.

Overview of C++ 2011

© Feabhas Ltd 2012



15

Key points

Raw pointers in C++ require careful (manual)
management from the programmer.

Using 'smart’ pointers uses RAIl / RDID to allow
automatic management of resource handling.

std::unique_ptr should be used for management of a
resource within a single scope (block).

std::shared_ptr should be used for managing resources
across scopes

std::weak_ptr resolves problems with circular references
on shared_ptrs

Overview of C++ 2011

© Feabhas Ltd 2012



