SECTION 02

Move semantics

Overview of C++ 2011

© Feabhas Ltd 2012



Copying may be expensive

Returning objects from
functions

Some algorithms (e.g. swap)

Dynamically-allocating
containers

Copying objects may not be the best solution in many situations. In such
cases we typically just want to transfer data from one object to another,
rather than make an (expensive, and then discarded) copy.

Overview of C++ 2011

© Feabhas Ltd 2012



Resource management classes

class SocketManager

{

public:
SocketManager();
~SocketManager();

// Deep-copy semantics
SocketManager& operator=(const SocketManger& rhs);
SocketManager(const SocketManager& src);

private:
Socket* pSocket;

¥

SocketManager: :SocketManager() : pSocket(new Socket)
{
cout << "SocketManager ctor" << endl;
pSocket->open();
}

SocketManager: :~SocketManager()

{

pSocket->close();
delete pSocket;
}

The SocketManager is responsible for the lifetime of its Socket object.
The Socket is allocated in the SocketManager constructor; and de-
allocated in the destructor.

The SocketManager class implements both the copy constructor and
assignment operator, providing a 'deep copy' policy.

Overview of C++ 2011

© Feabhas Ltd 2012



The cost of copy constructors

class SocketManager

{

// As previous

1

int main()

{

vector<SocketManager> v;

"

cout <<

==> push_back():" << endl;
v.push_back(SocketManager());

cout << "==> push_back():" << endl;
v.push_back(SocketManager());

Output

==> push_back():
SocketManager ctor
SocketManager copy
==> push_back():
SocketManager ctor
SocketManager copy
SocketManager copy

The second copy constructor is caused by the vector memory allocator
creating space for two new objects then copying the objects across. This is
an expensive operation since every copy requires de-allocation / re-allocation

of memory and copying of contents

Overview of C++ 2011

© Feabhas Ltd 2012



Resource pilfering, not copying

CopY of SocketManager makeSocket()

temp 1S {
made... SocketManager temp;
return temp;

}

int main()

{

SocketManager sm = makeSocket();
sm.open();

}

C++98 favours copying. When temporary objects are created, for example,
they are copied (using the copy constructor). In a lot of cases copying is an
unnecessary overhead since the temporary is going out of scope and can't
use its resources anymore.

It would be nicer if we could just 'take ownership' of the temporary's
resources, freeing it of the burden of de-allocating the resource, and freeing
us of the burden of re-allocating. This is sometimes known as 'resource
pilfering'.

Overview of C++ 2011

© Feabhas Ltd 2012



lvalues and rvalues

lvalue and rvalue is a property of expressions, not
objects

Ivalues persist beyond a single expression - In
other words, named objects

rvalues do not persist beyond their statement - In
other words, unnamed objects

Temporary values

Objects returned from functions

Ivalues and rvalues may be modifiable or non-
modifiable

The simple test for determining whether an expression returns an lvalue or
rvalue is: Can | take the address of the object? If you can, it's an Ivalue;
otherwise it's an rvalue

For example:
&*ptr
&arrayli]

&++X

are all valid (if not particularly useful); whereas:
&(x +vy)

&x++

&17.6

are not valid.

A function call is deemed to be an Ivalue expression only if it returns a
reference

Overview of C++ 2011

© Feabhas Ltd 2012



lvalue references

int func(int a, int b){ return a * b;}

void byRef(int& i) { /* .. */}

void byRef(const int& i) { /* .. */}

int main()

{
int i =
int& ri
const int& r2 = 17;

int& a = func(le, 20);

const int& b = func(10,20);

byRef(ri);
byRef(func(1e, 18));

OK: Can bind to lvalue
OK: Can bind to a literal

ERROR: cannot bind lvalue reference
to return object.

OK: Return value converted to const int&

Calls byRef(int&)
Calls byRef(const int&) with rvalue

C++98 has the concept of the reference (referred to as an Ivalue reference in

C++11).

An lvalue reference can be bound to a modifiable object; but not to an rvalue

or a constant object

a const-reference can be bound to an lvalue or an rvalue.

Overview of C++ 2011

© Feabhas Ltd 2012



rvalue references

int func(int a, int b){ return

void byRef(int& i) { /* .. */}
void byRef(const int& i) { /*
void byRef(const int&& i) { /*

int main()

{
int&& rval = func(10, 20);

byRef(rval);
byRef(func(1e, 10));
byRef(17);

a * b;}

- */}

- */}

// OK: rval is modifiable rvalue reference

// Calls byRef(int&&)
// Calls byRef(int&&) with modifiable rvalue
// Calls byRef(const int&)

An rvalue reference can be explicitly bound to an rvalue.

The rvalue reference, while not in an of itself particularly useful (like the

Ivalue reference, actually), can

be used to overload functions to respond

differently depending on whether a parameter is an Ivalue or an rvalue,
giving different behaviour in each case.

The compiler only favours rvalue reference overloads for modifiable rvalues;
for constant rvalues it always prefers constant-references (This means

overloading for const T&& has

no real application)

Rather confusingly an rvalue reference, since it is a named object, is actually

an lvalue!

Overview of C++ 2011

© Feabhas Ltd 2012



Move constructors

A move constructor takes an rvalue reference as the
parameter.

Discards the object's current state (if it exists)

Transfers the ownership of the rvalue resources into
the receiver.

Puts the rvalue object into an 'empty’ state.

As we can now distinguish between lvalue and rvalue objects we can
overload the constuctor (and, later, assighment operator) to support
resource pilfering.

Overview of C++ 2011

© Feabhas Ltd 2012



Transferring ownership

class SocketManager
{
public:
SocketManager();
~SocketManager();
SocketManager& operator=(const SocketManger& rhs);
SocketManager(const SocketManager& src);

SocketManager(SocketManager&& rvalue);
void send(const char* str);
private:

Socket* pSocket;
};

SocketManager: :SocketManager (SocketManager&& rvalue) :
pSocket(rvalue.pSocket)
{

cout << "SocketManager move ctor" << endl;

Take
ownership of
any resources

10

rvalue.pSocket = nullptr; Put the _

} rvalue object
in an ‘empty’
state

Note the parameter for the move constructor is not const - we need to

modify the parameter.

The move constructor 'claims' the resource of the supplied rvalue. By setting
the rvalue pSocket to nullptr, when the rvalue object goes out of scope its

destructor will do nothing.

Overview of C++ 2011

© Feabhas Ltd 2012



The container problem, revisited

class SocketManager

{
// As previous

1

int main()

{

vector<SocketManager> v;

cout << "==> push_back():" << endl;
v.push_back(SocketManager());

cout << "==> push_back():" << endl;
v.push_back(SocketManager());

t

==> push_back():

SocketManager ctor
SocketManager move
==> push_back():

SocketManager ctor
SocketManager move
SocketManager move

11

With the move constructor in place the SocketManager objects are moved
rather than copied. This code could be significantly more efficient, if there is

a lot of insertion in the vector.

Overview of C++ 2011

© Feabhas Ltd 2012



12

Move assignment

SocketManager& SocketManager: :operator=(SocketManager&& rhs)

if (this != &rhs) // ALWAYS check for self-assignment.
{

delete pSocket;

pSocket = rhs.Socket;

rhs.ptr = nullptr; // Again, set the rhs to an 'empty’
} // state.
return *this;

}

SocketManager makeSocket()

{

return SocketManager;

}

int main()
{

SocketManager s;

s = makeSocket(); // Calls operator=(SocketManager&&)
X

The assignment operator can also be overloaded for rvalue references.

The assighnment operator must always check for self-assignment. Although
this is extremely rare in hand-written code certain algorithms (for example
std::sort) may make such assignments.

(As an aside the assignment operator is considered an Ivalue since it returns a
reference to an existing object (*this))

Overview of C++ 2011

© Feabhas Ltd 2012



13

rvalue references to const objects

const SocketManager makeSocket()

{

return SocketManager; // Overload resoultion rules will force
// the compiler to invoke SocketManager's
// copy constructor, not its move constructor

}

int main()

{

const SocketManager s = makeSocket();

}

Be careful - returning a const value from a function will result in the copy
constructor being called, even if you have a move constructor defined

(NB: Visual Studio 11 appears to call the move constructor rather than the
copy constructor; which it shouldn't)

Overview of C++ 2011

© Feabhas Ltd 2012



14

Moving lvalue objects

class SocketManager

// As before..
};

int main()

{

vector<SocketManager> v;

SocketManager s;
v.push_back(std::move(s)); // Invoke move constructor

v[@].send("Hello"); // All future access via vector
v[0].send("World");

std: :move doesn't actually do any moving, it converts an Ivalue into an
rvalue. This forces the compiler to use the object's move constructor (if
defined) rather than the copy constructor.

Use std: :move if the Ivalue object is going to be discarded immediately -
either it won't be used again, or it is going out of scope.

Overview of C++ 2011

© Feabhas Ltd 2012



Moving derived classes

class Base

{
public:
Base(Base&& src);

i

class Derived : public Base

{
public:
Derived(Derived&& rvalue) : Base(std::move(rvalue))
{
// As before, take ownership of any
// derived class resources before setting
// the rvalue to 'empty'’

}
}s

15

If you want to use the base class move semantics from the derived class you
must explicitly invoke it; otherwise the copy constructor will be called.

The same is true with derived class assignment operators.

Overview of C++ 2011

© Feabhas Ltd 2012



16

Key points

Excessive copying of objects - particularly those that are
own resource - can be unnecessarily expensive

rvalue references allow the implementation of move
constructors

A move constructor 'takes ownership' of an rvalue's
resources and leaves it in an 'empty’ state.

Move semantics may also be applied to assignment
operators on a class, too.

std::move allows move semantics to be applied to Ivalue
objects

Overview of C++ 2011

© Feabhas Ltd 2012



