
© Feabhas Ltd. August 2017

An overview of software
modelling with UML

2

© Feabhas Ltd. November 2017

Why do we model?
Engineers are constrained by two conflicting factors of modern systems development:

 The increasing complexity of system - more features, higher quality, higher performance, etc.
 The decreasing time to market

In a typical software engineering project effort is usually distributed with a heavy weighting towards
the back-end of the project. That is, considerably more effort and cost is spent in the coding, test
and debug phase than in the earlier phases of the project. Notice also that there is still effort being
spent (usually on debugging) even after the project is released. For many projects this effort can be
considerable.

This effort curve ignores one vital aspect of engineering reality: later you find and fix bugs the more
it will cost you.

It's not that simple; not all bugs are created equal. The distribution of bugs in a typical project tends
to look like this:

3

© Feabhas Ltd. November 2017

What does this tell us? That engineers tend to make relatively few mistakes in their domain of
expertise (code), but tend to misinterpret or miscommunicate designs; and (generally) have a pretty
poor grasp of their customer's world. Ultimately, of course, the customer is predominantly interested
(and disappointed by) errors that unduly affect the way they work; which, sadly, is where our
engineers are making the most mistakes.

The intuitive solution is therefore to "left-shift" – apply more effort to those areas that are causing us
pain.

Whilst seemingly an obvious approach, practically this raises some important limitations. When we
build a software system we can verify that it is working correctly by testing it against requirements.
Without a system to test how can we demonstrate the correctness of our system?

The solution is to build effective models.

What is a model?
Models are a simplified representation of the real world. Model represents our understanding of the
problem to be solved. Most importantly, we can ask questions of our models, we can query them,
verify and validate them.

Producing a model requires an explicit action. There needs to be a clear understanding of the
problem in order to express things in the model. That is, the models should not “lie” – there should
be no implicit or invalid constructs concepts or relationships in the model.

Models fall into three main categories

Models for discovery
A discovery model is typically a semi-formal, or even informal, representation used to validate our
understanding of the problem domain. We build discovery models to confirm we have understood
the problem; to ensure we have a complete description; to clarify ambiguity; and to ensure our
understanding is consistent with that of the customer.

Requirements Architecture Detailed design Coding Test and debug Release

H
o

u
rs

Project phase

"'Left shift"

4

© Feabhas Ltd. November 2017

Models for discovery are deliberately simplistic – you are not required to actually build anything from
these models. Their primary application is validation – are we solving the right problem?

Models for understanding
The most common use of modelling is the construction of simplified representations of the system
and its responses. The model allows us to verify the real system without having to actually construct
it. The simplified model may be a different scale, different materials or may not even look like the
real system.

Since the model is a simplification it can only be used to study a small number of aspects of the real
system. Thus, we may have to build many – simple – models to get a true appreciation of how the
real system works.

Models for construction
A construction model is a blueprint from which a real system can be constructed. The model must
be detailed enough so that it can be built using defined construction techniques and mechanisms.

Discovery models allow us to
validate our understanding of the

problem –are we solving the right
problem?

Exercising the model gives
information about the real system.

5

© Feabhas Ltd. November 2017

That is, the model must have enough information so that the builder can construct the system such
that is matches the designer’s vision.

Different needs, different models
Different model users often have different concerns. Different models can be used to present a
viewpoint that satisfies those concerns. Consider the following abstractions of the London
Underground system:

The model must contain enough
detail to construct from

6

© Feabhas Ltd. November 2017

The top diagram presents an abstraction from the viewpoint of a tube traveller

The bottom diagram presents the underground system from the perspective of geographical location
of stations

There is no correct, complete set of views; the models you produce will depend on your audience and
their concerns. For example, a safety-critical system may require models demonstrating fail-safe or
reliability behaviours of the system; high integrity systems may require security models; etc.

The model views for dynamic systems
Dynamic systems, irrespective of notation or methodology, all have certain characteristics in
common:

Structure

They contain structure information – the elements that make up each element of the system, and
how those elements are organised.

Function

Inputs to the system will be processed and manipulated to form outputs – this may be a flow of
materiel, or information being manipulated by algorithms.

Dynamics

The behaviour of the system can change over time

Thus, when we want to model such dynamic systems we need tools (in our case, diagrams) to
support each of these aspects.

These views are known as Constructive diagrams, since they can be used to specify the details of the
software (our end product)

There is a fourth view included here: Interaction. Interaction diagrams show how, why and when
objects ‘talk‘ to each other. These diagrams are known as Descriptive diagrams, since they do not
specify the construction of the software but demonstrate how it works. These diagrams are key for
design verification.

7

© Feabhas Ltd. November 2017

Essential to building models is consistency. Ensuring diagram consistency requires consideration
of each diagram's:

 Correctness Ensuring that the diagram syntax is correct
 Validity. Ensuring the diagram actually says the right thing!

It addition model elements and behaviour in one view must support (and be supported by) other
views (cross-validation of the model). This is the basis of an executable model – that is, a model
that could be used to generate working software.

Building effective modelling hierarchies
An effective modelling process features a hierarchical approach to modelling. At each level there are
a different set of conceptual elements and the focus of the process is different.

At the highest level we consider the system as a black-box entity. The focus is on (requirements)
analysis, rather than design.

At the next level the focus is on synthesising a solution. At this level the focus is on good, modular,
maintainable design. At this stage the elements will be oriented towards the problem domain, rather
than implementation domain elements. Design evaluation is a key aim at this level.

The software design level extends the ‘pure’ design of the level above and applies ‘engineering
knowledge’ to the problem.

The lowest level in the hierarchy focuses heavily on the solution domain. The emphasis in on
efficient language (code) level design.

8

© Feabhas Ltd. November 2017

We should organise our design into a set of models. Each model consists of a set of (one or more)
UML diagrams.

The purpose of the Requirements model is to facilitate understanding of the problem. It is a model of
discovery.

The Ideal Object model focuses on creating an object-based design and evaluating it against the
system requirements and constraints. In this model practical implementation considerations are
(largely) ignored. The Ideal Object model is a model for understanding.

The Specification model extends and enhances the Ideal Object model to take into consideration
practical elements of embedded and real-time software design.

REQUIREMENTS
MODEL

IDEAL OBJECT
MODEL

SPECIFICATION
MODEL

IMPLEMENTATION
MODEL

9

© Feabhas Ltd. November 2017

The Implementation model focuses on language-level details and producing an efficient
implementation based on the target language and platform considerations.

The Specification and Implementation models are models for construction.

Between each model are Transformations. The transformations describe the rules for getting from
one model to the next (and back again – also known as traceability). The transformations are a key
part of the design documentation.

Notice, as we go through the modelling process our models will become more and more rigorous and
contain more information and more detail.

The Requirements model
The purpose of the Requirements model is to provide a stable understanding of the problem, prior to
any design work.

There is almost no synthesis (creation of objects / elements) in the Requirements model. In general,
only a small number of objects are created - the system itself, and the interface elements that
connect it to its environment.

The focus of the Requirements model is validation - have we understood, and are we solving, the
right problem? Validation must be done via the project stakeholders (or their internal
representatives)

You should not be creating system objects at this level of abstraction. If you are, then you are
probably (unintentionally) doing design, not analysis. Only the system and its interfaces should be
defined; and these should be obvious from the systems design.

Structural diagrams
There are two primary structural diagrams that can be constructed for the Requirements model:

The Context diagram defines the physical scope of the system. It is based on a corruption of the
Composite structure diagram.

The Domain model defines the information (data) content of the system and the relationships
between the information (sometimes called the 'business rules' of the system). It is captured as a
class diagram.

10

© Feabhas Ltd. November 2017

Interaction diagrams
The interaction diagrams provide usage-scenario based descriptions of the system's (externally-
observable) behaviour. As with all scenario-based techniques, you cannot completely describe the
system's behaviour; but the more scenarios you model the more complete your understanding is
likely to be.

The Use Case model defines the functional scope, and transactional behaviour, of the system.

The Use Case Sequence diagrams formalise the use case behaviour as individual scenarios

11

© Feabhas Ltd. November 2017

Dynamics diagrams
The System Modes diagram shows the (externally observable) dynamics of the system as a finite
state machine

Function diagrams
Any flow-of-materials processing, customer processes or significant algorithmic behaviours can be
captured with activity diagrams.

The Ideal Object model
The purpose of the Ideal object model is to synthesize a design to meet the requirements of the
system.

The focus is on demonstrating the design meets its requirements and is valid in terms of intrinsic
qualities – that is, coupling, cohesion, encapsulation and abstraction. Because of this it is not
necessary to build a full and complete set of executable diagrams. It is sufficient to capture the
design; and to demonstrate that the design is correct.

The Ideal object model is a ‘pure’ design; it does not consider any implementation details.

12

© Feabhas Ltd. November 2017

The Ideal model is a simplified abstraction of the ‘real’ solution:

 All objects are concurrent
 All processing is instantaneous
 All messages are asynchronous and instantaneous

This is the most general case, and does not necessarily represent any implementation reality. A
direct implementation of the Ideal model would likely be very unresponsive and slow. If you can't get
your design to work in this 'Ideal' environment it will be almost impossible to get it to work once you
apply real-world constraints and limitations!

Structural diagrams
The Ideal object diagram shows the elements of the design and their organisation. It is not
necessary to show types (classes) at this point.

Object 1

Object 3 Object 4

Object 2

msg 1

msg 3

13

© Feabhas Ltd. November 2017

Interaction diagrams
Ideal object sequence diagrams are used to verify the system operation by demonstrating the
operation (interaction) of the design objects.

Note there will be multiple Ideal object sequence diagrams. These will be derived from the
requirements sequence diagrams defined earlier.

The Specification model
In the Ideal object model the aim is synthesise, and evaluate, an object design that has the capability
to meet the customers’ needs. The Ideal object model is an abstract design in that it consists of all
concurrent objects, communicating via asynchronous messages (the simplest model to evaluate).

The Implementation model emphasises execution. In the Implementation model the design consists
of sequential code, organised into concurrent units of execution.

Clearly, there is an inherent mismatch between these two models.

14

© Feabhas Ltd. November 2017

Going straight from the Ideal model to code can give rise to a range of verification and design issues,
depending on the implementation environment chosen:

At one end of the scale, the implementation can be little or no resemblance to the Ideal design
because of the scale and number of transformations required to convert the Ideal design to one that
actually executes. In this case traceability from implementation back to design is a major issue.

At the other end of the scale an Implementation design that replicates the Ideal design could be
highly inefficient and the system may not approach its performance requirements.

With such a potentially large gulf between the Ideal design and the implementation what is needed is
a ‘bridging’ step.

The Specification model is an intermediate model to simplify the transition from analysis to
implementation. The Specification model sits between the Ideal model and the Implementation
model. The Specification model modifies the Ideal object model such that is can be transformed into
an implementation model. The purpose of the Specification model is to make the transition between
the Ideal design and the Implementation design as simple and as obvious as possible.

The Specification model uses the Ideal object model as its input. The reason is the Ideal object
model has already been demonstrated to be a ‘good’ (that is, the least compromised!) working
solution and is therefore an excellent base to work from.

In reality, the Specification model cannot be developed in isolation. There will be factors from the
implementation environment – for example, the choice of programming language, operating system
and/or hardware elements – that will constrain the design choices that can be made.

Ideal Object
model

Implementation
model

Ideal Object
model

Implementation
model

Specification
model

15

© Feabhas Ltd. November 2017

The Specification model focuses on the software detailed design. The aim is to produce a coherent,
consistent set of models that fully describe the software. This is sometimes referred to as an
executable model.

The emphasis of the Specification model is the practical realities of software design – behaviour,
interfacing, concurrency and inter-object communications. The aim is to produce a specific design
representation that can be transformed (mapped) to many possible implementations

The Specification model should be defined independent of programming language, RTOS etc. This is
why it is sometimes referred to as the Platform Independent Model (PIM).
This is the second stage in the design process where the developer can apply their engineering
knowledge. However, in the case of the Specification model the engineer must apply what they know
happens (or works) in the real world. In the Ideal object model practical realities can (and should) be
ignored. Now these practical realities must be applied; and their effects on the design evaluated.

Structural diagrams
The Composite structure diagram emphasises architecture – component hierarchy, interfaces and
interconnection.

The Class diagram defines the object types. The class diagram communicates:

 The data content and interface of each object type
 Object visibility
 Object structural relationships (composition)

16

© Feabhas Ltd. November 2017

Interaction diagrams
The Specification sequence diagrams show how the software design meets the customer
requirements.

The Specification sequence diagrams are a refinement of the Ideal object sequence diagrams, taking
into account changes required because of composition choices, concurrency design decisions and
factors driven by the other design forces in the system.

Dynamics diagrams
State machine diagrams show how the behaviour of objects change with time (known as 'reactive'
objects). Only reactive objects require state machines defined.

17

© Feabhas Ltd. November 2017

Function diagrams
Activity diagrams are used to define any significant algorithmic behaviour in the system

The Implementation model
The Implementation Model represents the software that will be coded. The model is hardware-,
platform- and language-specific. It represents one possible implementation of the Specification
model.

The Specification model is platform-independent – it could be implemented in many different ways
on different combinations of hardware, Operating System (OS) and programming language

UML is not directly executable. That is, it does not have a direct mapping to any particular computer
language (or have its own virtual machine). It must be translated, or transformed, from the Platform-
Independent Model (the Specification model) onto a particular implementation. The Implementation
transform rules map the Specification model onto one particular implementation.

Some features in the language can be translated very simply. Other features require an intermediate
model – the Specification model is translated first to an intermediate representation, then the
intermediate model is translated to programming constructs. The complexity of this intermediate
model is somewhat dependent on the target language – languages that support object-oriented
features, for example, require a simpler intermediate model than those that do not (for example, C)

The transformation rules should allow one particular Specification model to be implemented on a
number of implementations.

18

© Feabhas Ltd. November 2017

The Specification model cannot be implemented on just any platform. The target platform must
support a necessary set of features (in terms of hardware support, interrupt handling, concurrency,
any other operating system features). Without such features, the Specification design cannot be
implemented.

In a practical design, knowledge of the intended target platform will influence the design decisions
you make in the Specification model. That is, the design is not an open-loop process: there is feed-
forward from the design onto the target implementation and feed-back from the implementation into
the design.

Very commonly the Implementation model is omitted. It can be argued that the most effective model
to describe what software is supposed to do is source code itself, not a diagrammatic model

Organising multiple models
Once we have multiple models for our system we have to consider how to organise, develop and
grow these models. There are two core approaches, which we shall call the Evolutionary and
Adaptive approaches.

Evolutionary modelling
In the Evolutionary approach there is only ever one model of the system. The model (diagrams) is
grown and developed as more is learned about the system under development.

Specification

model

C++

VxWorks

C++

Linux

C

Nucleus

C++

Custom Platform

19

© Feabhas Ltd. November 2017

At the start of the project an Analysis model is built to understand the problem. This model is then
‘enriched’ with design elements. Finally the design elements are transformed to form an
implementation model which can be implemented.

The strengths of the Evolutionary approach are:

 There is only one model to maintain
 The model directly matches the current configuration of the software.

The major weakness of the Evolutionary approach is that transformation rules, design justification
and evaluations are often lost (since they must be maintained independently of the model). This can
make it extremely difficult for engineers joining a project to understand the background and rationale
behind the design, since all they see is the a ‘snapshot’ of the design as it currently is.

Use the Evolutionary modelling approach when the Problem Domain and Solution Domain are very
close. That is, when the problem can be expressed in concepts and language very similar to
implementation language. For example, a network packet sniffer.

Adaptive modelling
In the Adaptive modelling approach, each model stands separate from all the others. Once a model
has been created it is fixed and the next model created (adapted) from it using the transformation
rules. The model is only then changed when new information comes to light (for example, a new
project iteration)

Implementation model

Specification model

Ideal object model

Requirements

model

20

© Feabhas Ltd. November 2017

The strengths and weaknesses of the Adaptive approach are broadly the opposite of the Evolutionary
approach:

As a separate model exists at each level it is easy to see (and trace) the development of the system.
Readers can refer to analysis or early design models to gain an understanding of the system.

There are now four models to maintain. Each change in requirements will impact all four models. It
is therefore significant effort to keep all the models in sync.

Favour the Adaptive approach where the concepts of the problem domain are significantly different
to the solution domain. For example, in an Air Traffic Control system, concepts such as Aircraft and
Corridor are valid; yet have no relationship to how the concepts will be implemented.

How does this strategy fit with MDA?

The Object Management Group (OMG) Model-Driven Architecture is a modelling framework plus a set
of tools and technologies design to provide vendor-independent model-driven development of
software.

Requirements
model

Ideal object model

Specification model

Implementation
model

21

© Feabhas Ltd. November 2017

UML is one of the core enabling technologies; along with the Meta Object Facility (MOF) – a template
for providing meta-data and meta-data interchange for tools and applications – and the Common
Warehouse Metamodel (CWM) – designed for large scale database and data retrieval activities.

Also included with the MDA framework are middleware technologies like CORBA or Web Services, to
enable the interchange of data across networks and disparate platforms.

A word of warning should be raised here: MDA is targeted at the IT application market and not the
embedded arena. The core technologies and concepts have little relevance in (current) embedded
systems.

MDA’s modelling framework consists of three models:

Computationally-Independent Model (CIM). The CIM is a (non-executable) model, often thought of as
a Business Analysis model. The CIM focuses solely on the problem domain, its concepts and
relationships.

Platform-Independent Model (PIM). The PIM is a design specification model. The PIM describes a
synthesised solution in a language- and target-independent form, that may be transformed into one
(or more) target implementations.

Platform-Specific Model (PSM). The PSM is a transformation of the PIM onto a particular target
platform, language and other technologies.

MDA also specifies transformations between each of the models.

22

© Feabhas Ltd. November 2017

The MDA models largely align with the modelling strategy described here. The major differences are
in the Platform Independent Model, where we recommend two separate models (Ideal and
Specification).

Summary
In modern software design we don't have the luxury of being able to build complete, complex
systems which fail, and then learn from the results of our failures. To succeed we must fail earlier
when the costs and consequences of doing so are minimised.

The key to this is modelling.

Building models allows us to explore unfamiliar problem domains, explore and innovate with new
solutions and evaluate designs for correctness and quality before committing to expensive
implementations.

Building effective models in languages like UML requires us to understand two important and
fundamental concepts:

 How UML diagrams form orthogonal views into the design of a system; and that one diagram
is not sufficient to completely define all aspects of a system's behaviour

 That models are built for different purposes; to ask different questions.

Having a strategy for organising your models and transforming between them is the key to effective
modelling.

Requirements
model

Ideal Object model

Specification
model

Implementation
model

Computationally-
Independent Model

(CIM)

Platform-Independent
Model

(PIM)

Platform-Specific Model
(PSM)

23

© Feabhas Ltd. November 2017

Contact Us

Feabhas Limited

15-17 Lotmead Business Park,

Wanborough,

Swindon,

SN4 0UY

 UK

Email: info@feabhas.com

Phone: +44 (0) 1793 792909

Website: www.feabhas.com

