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System modes 
Captures system operating states 
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Analyse system functional 
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Significant operational scenarios 
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Context 
Define system scope and interfaces 

Activity 
Capture flow-of-materials 

processing, algorithms, etc. 
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Ideal object interactions 
Verify system design.  Derived from Use Case 
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Ideal object interactions 
Verify system design.  Modified by 

concurrency decisions in design 

State behaviour 
Refining reactive object behaviour 

Composite structure 
Capturing system architecture 
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context:  
serviceRequest (index: int, buffSize : int) : void 
 
pre:  0 <= index <= 15 
      buffSize > 100 
post: result < 1024 
body: Do stuff 
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Operation specifications 
Specifying operation behaviour, pre- and 

post-conditions 

Activities 
Defining complex algorithms 

Specification Model 
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