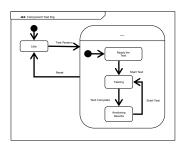
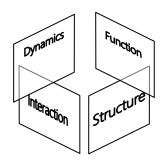


PRAGMATIC UML

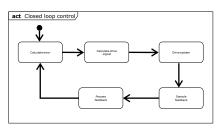
A Model Overview

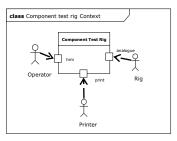

Glennan Carnie, Technical Consultant



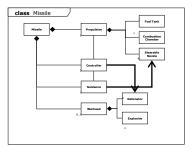
Requirements Model

System modes

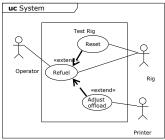

Captures system operating states


Activity

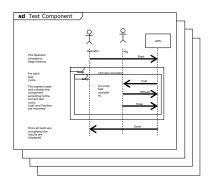
Capture flow-of-materials processing, algorithms, etc.


Context

Define system scope and interfaces


Data model

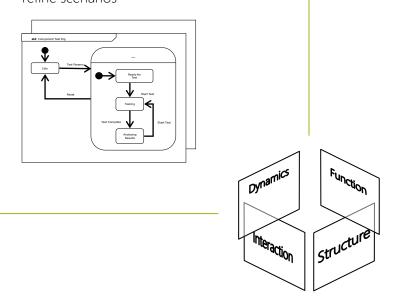
Problem domain information and relationships


Use cases

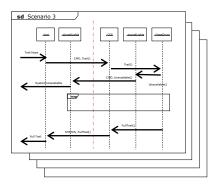
Analyse system functional behaviour

Use case interactions

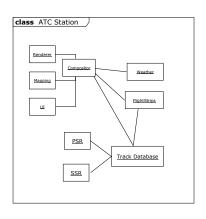
Significant operational scenarios



Ideal Object Model


Object state behaviour

(optional) Capture reactive object behaviour; refine scenarios

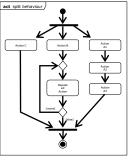

Ideal object interactions

Verify system design. Derived from Use Case interactions

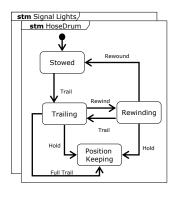
Ideal object model

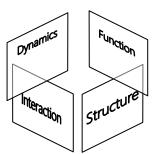
Capture system design

Specification Model

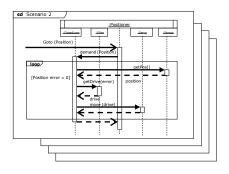


Specifying operation behaviour, pre- and post-conditions


Activities

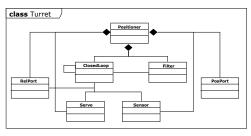

Defining complex algorithms

State behaviour


Refining reactive object behaviour

Ideal object interactions

Verify system design. Modified by concurrency decisions in design


Composite structure

Capturing system architecture

Classes

Type information - operations, attributes and associations

Contact Us

Feabhas Limited 15-17 Lotmead Business Park, Wanborough, Swindon, SN4 0UY UK

www.feabhas.com

info@feabhas.com

+44 (0) 1793 792909