
PRAGMATIC UML

A Model Overview

Glennan Carnie, Technical Consultant

class Component test rig Context

Component Test Rig

Operator
Rig

Printer

print

analogue

hmi

class Missile

Missile Propulsion

Guidance

Warhead

1

1

0..1

Fuel Tank

Combustion
Chamber

Steerable
Nozzle

Explosive

Detonator

Controller

1

1

4

1

1

Reset

Operator

uc System

Test Rig

Adjust
offload

Refuel

«extend»

«extend»

Rig

Printer

std Component Test Rig

Active

Idle

Ready for
Test

Testing

Analysing
Results

Start Test

Test Complete

Test Params

Start Test

Reset

sd Test Component

ARS

Operator Rig

loop

Start

Fuel

Offload

Hose

Done

[Current
test
complet
e]

[All test complete]

The Operator
chooses to
begin testing

For each
test
cycle…

The system loads
and unloads the
component
according to the
current test
cycle.
Load and Position
are recorded

Once all tests are
completed the
results are
displayed

loop

act Closed loop control

Calculate error
Calculate drive

signal
Drive system

Sample
feedback

Process
feedback

System modes
Captures system operating states

Use cases
Analyse system functional

behaviour

Use case interactions
Significant operational scenarios

Data model
Problem domain information

and relationships

Context
Define system scope and interfaces

Activity
Capture flow-of-materials

processing, algorithms, etc.

Requirements Model

std Component Test Rig

Active

Idle

Ready for
Test

Testing

Analysing
Results

Start Test

Test Complete

Test Params

Start Test

Reset

Ideal object interactions
Verify system design. Derived from Use Case

interactions

PSR

Track Database

FlightStrips

Weather

Renderer

Mapping

UI

class ATC Station

SSR

Compositor

Object state behaviour
(optional)

Capture reactive object behaviour;

refine scenarios

Ideal object model
Capture system design

sd Scenario 3

 :hmi :signalLights

loop

CMD_Trail()

System Unavailable

CMD_Unavailable()

STATUS_FullTrail()

 :GUI :HoseDrum :signalLights

Trail()

Unavailable()

FullTrail()

Trail Hose

Full Trail

Ideal Object Model

Ideal object interactions
Verify system design. Modified by

concurrency decisions in design

State behaviour
Refining reactive object behaviour

Composite structure
Capturing system architecture

notes : Currency

new : NoteDetector

sensor : Scanner

ctrl : StackerSequencer

gate :Diverter count : Counter

arrivals : List
speedControl : ClosedLoop

m : Motor beltSpeed : Sensor

class Bank Note Sorter

UI

NoteIdentifier

NoteRegister

Stacker

NoteFeeder

Transport

class Turret

Positioner

ClosedLoop Filter

RelPort

Servo Sensor

PosPort

Classes
Type information - operations,

attributes and associations

stm Signal Lights

stm HoseDrum

Position
Keeping

Hold

Rewind

Trail

Rewound

Trailing Rewinding

Stowed

Hold

Trail

Full Trail

sd Scenario 2

 :Positioner

 :ClosedLoop

demand (Position)

 :Filter :Sensor :Servo

Goto (Position)

getPos()

getDrive(error)

move (drive)

loop

[Position error = 0]
position

drive

context:
serviceRequest (index: int, buffSize : int) : void

pre: 0 <= index <= 15
 buffSize > 100
post: result < 1024
body: Do stuff

act split behaviour

Action
A1

Action B Action C

Repeat
ed

Action

[more]

Action
A2

Action
A3

[else]

Operation specifications
Specifying operation behaviour, pre- and

post-conditions

Activities
Defining complex algorithms

Specification Model

Contact Us

Feabhas Limited
 15-17 Lotmead Business Park,
Wanborough,
Swindon,
SN4 0UY
 UK

www.feabhas.com info@feabhas.com +44 (0) 1793 792909

