

C++11: The Rule of the Big Five

Resource Management
The dynamic creation and destruction of objects was always one of the bugbears of C. It required the
programmer to (manually) control the allocation of memory for the object, handle the object’s
initialisation, then ensure that the object was safely cleaned-up after use and its memory returned to
the heap. Because many C programmers weren’t educated in the potential problems (or were just
plain lazy or delinquent in their programming) C got a reputation in some quarters for being an
unsafe, memory-leaking language.

C++ improved matters significantly by introducing an idiom known (snappily) as RAII/RRID –
Resource Acquisition Is Initialisation / Resource Release Is Destruction*. The idiom makes use of the
fact that every time an object is created a constructor is called; and when that object goes out of
scope a destructor is called. The constructor/destructor pair can be used to create an object that
automatically allocates and initialises another object (known as the managed object) and cleans up
the managed object when it (the manager) goes out of scope. This mechanism is generically referred
to as resource management. A resource could be any object that required dynamic creation/deletion
– memory, files, sockets, mutexes, etc.

Resource management frees the client from having to worry about the lifetime of the managed
object, potentially eliminating memory leaks and other problems in C++ code.

However, RAII/RRID doesn’t come without cost (to be fair, what does?) Introducing a ‘manager’
object can lead to potential problems – particularly if the ‘manager’ class is passed around the
system (it is just another object, after all). Copying a ‘manager’ object is the first issue. Cline,
Lomow and Girou[1] coined the phrase “The Rule of The Big Three” to highlight the issues of
attempting to copy a resource-managing object. However, in C++11 the concept of move semantics
was added to the language. This adds another aspect of complication; and leads to “The Rule of The
Big Five”**

The Rule of The Big Five states that if you have to write one of the functions (below) then you have to
have a policy for all of them.

1 – The destructor
For our example we will use a SocketManager class that owns (manages) the lifetime of a Socket
class.

The SocketManager is responsible for the lifetime of its Socket object. The Socket is allocated in
the SocketManager constructor; and de-allocated in the destructor.

A small warning here: make sure the new and delete operators ‘match’: that is, if the resource is
allocated with new, then use delete; if the resource is allocated as an array (new[]) make sure array
delete is used (delete[]) Failure to do so will lead to ‘Bad Things’ happening.

Also, if your resource manager class is going to be used polymorphically (that is, in an inheritance
hierarchy) it is good practice to make the destructor virtual. This will ensure that any derived class
constructors, if defined, will be called even if the client has a pointer to a (more) base class.

Here’s the memory layout for a SocketManager object:

When mgr (above) goes out of scope (in this case at the end of main; but in general at the end of the
enclosing block) its destructor will be automatically called. The destructor calls delete on the
pSocket pointer, which automatically calls the Socket’s destructor before releasing the memory for
the Socket.

2 – The assignment operator
It is possible to assign two objects of like type. If you do not provide one the compiler creates a
default assignment operator. The default assignment operation is a member-wise copy function;
each data member is copied in turn.

At first glance the code below appears sound:

The problem is the creation of the temporary SocketManager object in func().

Since the default assignment operator performs a member-wise copy this means mgr's pointer to its
Socket is copied into temp. When temp goes out of scope (at the end of func()) it is destroyed and it
deletes its pointer – just as it should.

When mgr goes out of scope at the end of main() it, too, tries to delete its pointer. However, that
region of memory has already be deleted (by temp) so you will get a run-time error!

In addition, any attempt to use mgr after the call to func() will result in undefined (and almost
certainly fatal) behaviour.

Here we see the memory maps, showing what happens during func().

At the beginning of func() a temporary object is created, with its own Socket. mgr also has its own
Socket.

The default assignment does a member-wise copy of all the elements of mgr. At this point we get our
first problem - a memory leak! temp's original pointer to its Socket has been over-written, meaning
we can never delete that memory.

Second, when temp goes out of scope it will delete whatever its pSocket pointer is addressing - which
is the same memory owned by mgr.

To eliminate this problem we must write our own, more sophisticated, assignment operator. The
implementation of the assignment operator proceeds as follows:

1. A new resource (a Socket in this case) is allocated. We do this before deleting our old
resource just in case the allocation fails - we'd be left with a 'broken' object.

2. The contents of the right-hand-side's resource are copied into the temporary resource (which
may incur another deep copy itself!)

3. We delete the old (no longer needed) resource and free up its memory
4. We take ownership of the temporary resource; it is now owned and managed by us.

Our assignment operator function now implements the correct class copy semantics ("deep copy").
In this example I’ve used the (more explicit) this-> notation to specify the receiving object; and src
for the source object. This is purely for clarity and is not required.

The code presented here is exception safe because the request for more memory is made before the
existing memory is deleted.

The assignment operator returns a reference to itself. This is so expressions like this work:

mgr1 = mgr2 = mgr3;

There is a special case of copy to self. This code works, although the storage for the string will move,
and it is wasteful. A test for this != &src could be added, but how often does this happen? The
code to trap the special case becomes an overhead on the general case.

3 – The copy constructor
The compiler-supplied copy constructor does a member-wise copy of all the SocketManager's
attributes. Of course, this is the same situation as previously.

Again, in this situation we require a deep-copy of the SocketManager's attributes.

You can provide your own copy constructor, which overrides the compiler-supplied one. Note the
signature of the copy constructor – it takes a reference to a const SocketManager object.

In the case of the copy constructor we can be certain the recipient (the SocketManager being
created) has no resource; so we don't need (and never should try) to delete it.

Notice that we check if the source object actually has a resource allocated, otherwise we'll get a run-
time fault when we try and copy from an uninitialised object.

So when in your code will the copy constructor be called? Unlike the assignment operator the copy
constructor is often called ‘invisibly’ by the compiler. Here are the four scenarios the copy
constructor is invoked:

1 – Explicit copy construction

The most explicit way to invoke the copy constructor on an object is to create said object, passing in
another object (of the same type) as a parameter.

This is not a particularly common way to construct objects; compared with below.

2 – Object initialisation

C++ makes the distinction between initialisation and assignment. If an object is being initialised the
compiler will call a constructor, rather than the assignment operator. In the code below the copy
constructor for mgr2 is called:

3 - Pass-by-value parameters

When objects are passed to functions by value a copy of the caller’s object is made. This new object
has a constructor called, in this case the copy constructor.

This extra overhead (memory + constructor call time) is why it’s always better to pass objects to
functions by reference.

4 – Function return value

If a function returns an object from a function (by value) then a copy of the object is made. The copy
constructor is invoked on return.

There are two exceptions to this:

If the object has a move constructor defined (see below) then that will be called in preference.

If the return object is constructed directly as part of the return statement (as in
NRV_make_SocketManager(), above) the compiler can optimise this and construct the return object
directly into the callers object. In this case a ‘normal’ constructor is called rather than a copy
constructor. This mechanism is referred to as the Named Return Value (NRV) optimisation.

4 – The move constructor
Copying objects may not be the best solution in many situations. It can be very expensive in terms of
creating, copying and then destroying temporary objects. For example:

 Returning objects from functions
 Some algorithms (for example, swap)
 Dynamically-allocating containers.

Let’s take a vector of SocketManagers as an example:

The second copy constructor is caused by the vector memory allocator creating space for two new
objects then copying the objects across (since the vector must keep the elements contiguous). This is
an expensive operation since every copy requires de-allocation / re-allocation of memory and
copying of contents.

In such cases we typically just want to transfer data from one object to another, rather than make an
(expensive, and then discarded) copy.

C++98 favours copying. When temporary objects are created, for example, they are copied (using the
copy constructor). In a lot of cases copying is an unnecessary overhead since the temporary is going
out of scope and can't use its resources anymore.

It would be nicer if we could just 'take ownership' of the temporary's resources, freeing it of the
burden of de-allocating the resource, and freeing us of the burden of re-allocating. This is sometimes
known as 'resource pilfering'.

What we need is some way of distinguishing between temporary objects (that are going to go out of
scope soon) and objects that will persist beyond the end of the statement.

C++11 introduced the concept of the r-value reference for such circumstances.

An r-value reference can be explicitly bound to an r-value. An r-value is an unnamed object. A
temporary object, in other words. (For a much more detailed description of l-value and r-value
objects, see http://blog.feabhas.com/2013/02/l-values-r-values-expressions-and-types/)

The r-value reference, while not in and of itself particularly useful (like the l-value reference,
actually), can be used to overload functions to respond differently depending on whether a parameter
is an l-value or an r-value type, giving different behaviour in each case.

The compiler only favours r-value reference overloads for modifiable r-values; for constant r-values
it always prefers constant l-value references (This means overloading for const T&& has no real
application)

As we can now distinguish between l-value and r-value objects we can overload the constructor (and,
later, assignment operator) to support resource pilfering:

The move constructor:

 Takes an r-value reference as a parameter.
 Discards the object’s current state.
 Transfers ownership of the r-value object into the receiver
 Puts the r-value object into an ‘empty’ state.

http://blog.feabhas.com/2013/02/l-values-r-values-expressions-and-types/

Note the parameter for the move constructor is not const - we need to modify the parameter.

The move constructor 'claims' the resource of the supplied r-value. By setting the r-value pSocket to
nullptr, when the r-value object goes out of scope its destructor will do nothing.

Returning to our vector problem: with the move constructor in place the SocketManager objects are
moved rather than copied. This code could be significantly more efficient, if there is a lot of insertion
in the vector.

There are some things to be aware of if you want to include move semantics with derived classes. If
you want to use the base class move semantics from the derived class you must explicitly invoke it;
otherwise the copy constructor will be called.

std::move doesn't actually do any moving; it just converts an l-value into an r-value. This forces the
compiler to use the object's move constructor (if defined) rather than the copy constructor.

5 – The move assignment operator
Occasionally, it is useful to only have one resource at a time and to transfer ownership of that
resource from one ‘manager’ to another (for example, this is what std::unique_ptr does). In such
cases you may want to provide a move assignment operator.

The assignment operator must always check for self-assignment. Although this is extremely rare in
hand-written code certain algorithms (for example std::sort) may make such assignments.

Note the difference between this code and the Object Initialisation example (above). In this case,
since mgr has already been initialised the line mgr = make_SocketManager() is performing an
assignment.

Also, realise that the original object is left in an ‘empty’ state, so attempting to use it could result in
some unpleasant surprises. Be careful with explicitly moving objects in your application code; make
sure they won’t be used any more.

Your resource management policy
The Rule of The Big Five says if you’ve written one of the above functions then you must have a
policy about the others. It doesn’t say you have to write them. In fact, you have to have a resource
management policy for every class you create. Your policy can be one of the following:

 Use the compiler-provided versions of these functions (well, the first three, anyway; the
compiler doesn’t automatically provide a move constructor and move-assignment operator).
In other words, you’re not doing any resource management in the class.

 Write your own copy functions to perform deep copy, but don’t provide move semantics.
 Write your own move functions, but don’t support copying.
 Disable copying and move semantics for the class, because it doesn’t make sense to allow it.

Suppressing move and copy is straightforward; and there are two ways to do it:

 Make the appropriate function declarations private. (C++98)
 Use the =delete notation (C++11)

Conclusion
Resource management – making use of C++’s RAII/RRID mechanism – is a key practice for building
efficient, maintainable, bug-free code. Defining your copy and move policy for each type in your
system is a key part of the software design. The Rule of The Big Five exists as an aide memoir for
your copy/move policy. Feel free to ignore it; but do so at your peril.

Finally, examining move and copy policies also leads to two supplemental good practices:

 A class should only manage at most one resource.
 Simplify your types by making use of extant types that perform resource management for

you, such as ‘smart pointers’.

*Bjarne Stroustrup joked once that he should never, ever work in marketing, after coming up with an
unpronounceable acronym like RAII/RRID!

**With apologies to Messer’s Cline, Lomow and Girou for the blatant rip-off of their phrase. Please take it
as a measure of the high esteem I hold their rule in.

References

1 C++ FAQs 2ND Edition
Cline, Lomow, Girou
Addison-Wesley Professional (December 21, 1998)
ISBN-13: 978-0201309836

