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ABSTRACT

ARM's introduction of their Cortex Microcontroller Software Interface Standard (CMSIS)
provides a framework of reusable components for both software developers and vendors to
utilize. Aspects such as power-up boot management and interrupt control have been abstracted
and defined by ARM for their Cortex family of microcontroller cores. This whitepaper examines
the CMSIS framework and discusses the pros and cons of such an approach.
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CORTEX BACKGROUND

Before delving into CMSIS (Cortex Microcontroller Software Interface Standard), it is worth a very short
overview of ARM, which will help put in context where CMSIS has come from. First and foremost we need
to establish what business ARM is in. The majority of ARM’s revenue comes from licensing the Intellectual
Property (IP) of core processor designs. ARM themselves don’t make silicon - they leave that to their
licensees.

ARM have been incredibly successful with their “classic” processor cores

e The ARM11 and ARM9 are ARM'’s high-end embedded cores. These cores are suitable to run high
end operating systems such as embedded Linux, Windows CE and Symbian. Over 5 Billion ARM9
processors have been shipped so far and are widely used by TI in their OMAP family.

e The ARM7 is ARM'’s current low-end core and is widely used across a range of applications, most
successfully in many mobile phones. The ARM7 was first introduced in 1994, and is ARM’s most
successful core to date. Over 10 Billion+ ARM7’s have been shipped to date.

Not content to sit on their laurels, ARM has designed a complete new set of processor architectures to
replace the aging ARM7, ARM9 and ARM11 families. These new cores are all part of the Cortex Family,
broken down as (1):

e C(Cortex-A (Application) Series
o ARM11 replacement

e Cortex-R (Real-time) Series
o ARMO replacement

e Cortex-M (Microcontroller) Series
o ARM7 replacement

Currently CMSIS only applies to Cortex-M series processor cores. The Cortex-M family currently has four
variants (Figure 1): the M0, M1, M3 and M4. Central to the design of CMSIS is that all these processor
designs share a common core architecture.
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FIGURE 1 CORTEX-M FAMILY
The Cortex-M common features across the family are:
e RISC architecture
e Nested Vectored Interrupt Controller (NVIC)
e Common register set (general purpose registers, etc.)

e System Interrupt for tick timing (SysTick)

WHAT IS CMSIS?

What do ARM Say? According to ARM’s website, CMSIS for a Cortex-M Microcontroller System (2) defines:
e A common way to access peripheral registers and a common way to define exception vectors.
e The register names of the Core Peripherals and the names of the Core Exception Vectors.
e Adevice independent interface for RTOS Kernels, including a debug channel.
e Interfaces for middleware components (TCP/IP Stack, Flash File System).

Simply put, CMSIS is a collection of source files (.c, .h and assembler) to create a minimal board support
package (BSP) for Cortex-M series processors. In addition CMSIS attempts to define a Hardware
Abstraction Layer (HAL) for common peripherals in addition to the Cortex-M core devices.

The whole project is heavily C Programming centric (C++ should work, but this may be implementation
specific - this will be addressed later).

This paper is based on Version 1.30 of CMSIS. Version 2.0 is in development and due for release in Q3 of
2010. Version 2.0 has added support for the Cortex-M4.
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KEY COMPONENTS OF CMSIS

CMSIS has three component parts:

e Core Peripheral Access Layer

e Instrumented Trace Macrocell (ITM)
e Middleware Access Layer

In addition CMSIS defines certain coding rules and conventions, for example, CMSIS C code should conform
to MISRA 2004 rules (3). All code should use the standard data types defined in the ISO C99 header file
<stdint.h> (4).

Other recommendations include using CamelCase (5) names to identify peripherals access functions and
interrupts.

CORE PERIPHERAL ACCESS LAYER

The Core Peripheral Access Layer defines a number of assembly-implemented C routines for accessing
the core registers and certain key instructions in the instruction set. As the NVIC is common across all
Cortex-M processors (even the memory address the registers reside at are fixed) then CMSIS abstracts
access to the NVIC through a set of functions. Finally all Cortex-M processors have a predefined system
timer (SysTick) used to generate interrupts at a regular interval. CMSIS defines a function for configuring
SysTick.

INSTRUMENTED TRACE MACROCELL (ITM)

An Instrumented Trace Macrocell (ITM) provides a new way for developers to output data to a debugger
(it can do a number of other things but that is outside the scope of CMSIS). To provide a common
mechanism, CMSIS defines a function for Cortex-M3 ITM Debug Access, called ITM_SendChar. It also
defines additional debug access through ITM_ReceiveChar. This allows simple printf/scanf support
for debugging.

MIDDLEWARE ACCESS LAYER

Additionally the Middleware Access Layer attempts to define standard interfaces to common devices
external to the Cortex-M core, for example Ethernet Controllers, UARTs (Universal Asynchronous
Receiver Transmitter) and SPI (Serial Peripheral Interface).

KEY ASPECTS OF CMSIS

The generic structure of the CMSIS files is shown in Figure 2.

First, the root directory indicates the version of the CMSIS (e.g. CMSIS_V1P30 is CMSIS version 1.30). Next
there is a high level directory for each Cortex family (e.g. MO, M3). For each Cortex-M family, there is a
core C source and header file.

FGKBHKS EXAMINING ARM'S CORTEX MICROCONTROLLER SOFTWARE INTERFACE STANDARD



Copyright © Feabhas Limited 2010

1
CMSIS_VxPxx

1

Cortex-Mx
1 1 1 1 1

pavice e Device startup compiler

support vendor

f system_Device.h
1 1 1
Compiler
Examples ST Target

[ main.c

Vendor specific

FIGURE 2 CMSIS GENERIC FILE STRUCTURE

Following on from the core files are files for specific silicon vendor’s (e.g. NXP, ST, etc.) devices. Central to
the concept of a device is the file “Device.h”. This is the key configuration file for the given Cortex-M
implementation. In addition it also defines register structures and access macros for major peripherals
above and beyond the Cortex-M core.

Within Device.h are three very important pre-processor symbols configured on a per-device basis.
These define:

o  Whether the Memory Protection Unit (MPU) is present (__MPU_PRESENT)
o The number of bits used for priority levels in the NVIC (__NVIC_PRIO_BITS)

o  Whether SysTick configuration function is supplied by the silicon vendor or whether the
default (in core_cmX.h)isused (__Vendor_SysTickConfig)

Also Device. h defines an enum specifying the Cortex-M processor exceptions numbers.

Next in this directory is the file system_Device.h. This file has a common set of declarations:
o void SystemInit (void)
o uint32_t SystemCoreClock
o void SystemCoreClockUpdate (void)

The accompanying definitions are found in system_Device.c. The SystemInit function is designed to
be the entry point for the executable code in CMSIS. It is worth noting that when the Cortex-M processor
resets it initially reads two 32-bit values from memory:

e starting value for the stack pointer at address 0x00000000
e starting value for the program counter at address 0x00000004
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The reset handler defined by 0x00000004 is expected to do some basic housekeeping and then call
SystemInit.Itisintended that SystemInit should do any board specific configuration such as setting
up the Phase-Lock-Loop (PLL) and any memory access models where required.

SystemCoreClock is a global variable that contains the system core clock frequency. This mainly is used
to setup the SysTick timer.

For a given device, there is then a compiler specific assembler file startup_Device.asm. This defines
the Interrupt Vector Table (IVT) and the reset handler code.

NXP LPC17XX

As an example of this generic file structure, we shall take a look at the NXP LPC17xx (6). The LPC17xx
family are Cortex-M3 based microcontrollers. The specific device we are going to use as a reference is the
LPC1768 (7).

In addition we shall use the IAR Embedded Workbench as the example compiler (8).

The directory and file structure for the NXP LPC17xx / IAR configuration is shown in Figure 3.

— |
CMSIS_V1P30
1
= Cortex-M3
»
1 1 1 1 1
RV NXP LPC17xx startup iar
support
»
|
|
1 1 1
Examples iar LPC17xx

mmm  System_LPC17xx.c

startup_LPC17xx.s —

IAR EW specific

FIGURE 3 NXP LPC17XX / IAR STRUCTURE

As the LPC17xx is Cortex-M3 based, the core files are “core_cm3.h” and “core_cm3.c”. The files
“core_cm3.h” and “core_cm3.c” are standard across all vendor devices that have the Cortex-M3 at their
core. A fragment of “core_cm3.h” is shown below.
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#include <stdint.h> /* Include standard types */

#tdefine _I volatile const /*1< defines 'read only' permissions */
#tdefine _0 volatile /*1< defines 'write only' permissions */
#tdefine _TIo volatile /*1< defines 'read / write' permissions */

typedef struct

{
10 uint32_t ISER[8]; /*1< Offset: 0x000 Interrupt Set Enable Register
*/
uint32_t RESERVED®[24];
__TI0 uint32_t ICER[8]; /*1< Offset: 0x080 Interrupt Clear Enable Register
*/
uint32_t RSERVED1[24];
__TI0 uint32_t ISPR[8]; /*1< Offset: 0x100 Interrupt Set Pending Register
*/
uint32_t RESERVED2[24];
10 uint32_t ICPR[8]; /*1< Offset: 0x180 Interrupt Clear Pending Register
*/
uint32_t RESERVED3[24];
__TI0 uint32_t IABR[8]; /*1< Offset: Ox200 Interrupt Active bit Register
*/
uint32_t RESERVED4[56];
__TIouint8_t 1IP[240]; /*1< Offset: 0x300 Interrupt Priority Register (8Bit wide)
*/
uint32_t RESERVED5[644];
0 uint32_t STIR; /*1< Offset: OxEQQ Software Trigger Interrupt Register
*/

} NVIC_ Type;

/* Memory mapping of Cortex-M3 Hardware */

#tdefine SCS_BASE (OxE00OEL00Q) /*1< System Control Space Base Address
*

#Qefine NVIC_BASE (SCS_BASE + ©0x0100) /*1< NVIC Base Address

*

#gefine NVIC ((NVIC_Type *) NVIC_BASE) /*1< NVIC configuration struct

*/

#define __NOP __hop

#if (!defined (__Vendor_SysTickConfig)) || (__Vendor_SysTickConfig == @)
static _ INLINE uint32_t SysTick_Config(uint32_t ticks)

{
}

Looking at the fragment, the first line has the include directive for the C99 library <stdint.h> as
required by the CMSIS standard. The type uint_32t is defined within <stdint.h>. The next three
#defines set up common symbols used to define register access; Input (__I) for read-only, Output (__0) for
write-only, and Input-Output (__10) for read-write registers. Unfortunately C cannot define “write-only”
registers, so __O is a slight misnomer. In theory these symbols could be used to statically check code for
attempts to read a write-only register.

Next we have a typedef’d structure for the central onboard devices register set. It is important to note
that this is relying on the structure being packed accordingly (pedantically that cannot be guaranteed, but
in reality it is okay for ARM compilers due to the ARM ABI (9)). The device shown here is the common
Nested Vectored Interrupt Controller (NVIC).

As part of the Cortex-M memory map, ARM has pre-defined from address 0XE0000000 to the top of
memory (OxFFFFFFFF)as a system region. The Cortex-M core peripherals are all defined within this
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system region (note these are common across all M3 implementations). For example, the first set of
registers for the NVIC are called Interrupt Set-Enable Registers (ISER). There are up to eight of these,
starting at address 0xEOOOE100. The #define for SCS_BASE acts as an offset for all system peripherals.
The NVIC_BASE is defined at the appropriate address offset from the SCS_BASE (+0x100). Finally we see
a symbol (NVIC) defined that enables a programmer, via the struct, to access the NVIC’s registers using a
standard syntax, i.e.

NVIC->ISER[O]

Following on we see an example of one of the common ARM op-codes (no operation - NOP) being defined.
This example is IAR dependent and we’ll see how other compilers are supported later.

Finally, there are the static inline definitions for key device configurations, such as the NVIC and the
SysTick.

One last part of the core functionality is a set of assembler functions to access core registers within the
Cortex-M3. For example PRIMASK is a 1-bit register which, when set, masks all exceptions apart from the
Non-Maskable Interrupt (NMI) and the hard-fault exception. An accessor function is declared in
core_cm3.h

uint32_t _ get PRIMASK(void)

and defined in core_cm3.c

__ASM uint32_t _ get PRIMASK(void)
{

mrs ro, primask
bx 1r

}

Again, the definition of this function is IAR compiler specific.

Following on from the core files are the device specific grouping. In this example we shall examine the
LPC17xx device specific files. The central file LPC17xx. h defines an enum containing the exception
numbers for the common Cortex-M3 exceptions and the LPC17xx specific interrupts (show below). The
Cortex-M3 common exceptions are all negative values. Device-specific interrupt numbers always start at
zero (0). In the example all LPC17xx microcontrollers have a Watchdog timer (WDT) defined as interrupt
number 0.
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10



Copyright © Feabhas Limited 2010

typedef enum IRQn
{

/****** Cortex-M3 Processor EXCeptiOnS Numbers ***************************************************/

NonMaskableInt_IRQn
MemoryManagement_IRQn
BusFault_IRQn
UsageFault_IRQn
SVCall_IRQn
DebugMonitor_IRQn
PendSV_IRQn
SysTick_IRQn

[***x%k%k ] pC17xx Specific Interrupt Numbers

WDT_IRQn
TIMER@_IRQn
TIMER1_IRQn
TIMER2_IRQn
TIMER3_IRQn
UART@_IRQn
UART1_IRQn
UART2_IRQn
UART3_IRQn
PWM1_IRQn

-14,
-12,
-11,
-10,
_5’
_4’
_2,
_1,

o,
1,
2,
3,
4,
5,
6,
7,
8,
9,

/*1< 2 Non Maskable Interrupt

/*!1< 4 Cortex-M3 Memory Management Interrupt
/*!1< 5 Cortex-M3 Bus Fault Interrupt

/*!1< 6 Cortex-M3 Usage Fault Interrupt

/*!1< 11 Cortex-M3 SV Call Interrupt

/*1< 12 Cortex-M3 Debug Monitor Interrupt
/*1< 14 Cortex-M3 Pend SV Interrupt

/*1< 15 Cortex-M3 System Tick Interrupt

/*1< Watchdog Timer Interrupt
/*!1< Timer9 Interrupt

/*!< Timerl Interrupt

/*!< Timer2 Interrupt

/*!< Timer3 Interrupt

/*!< UARTO Interrupt

/*!< UART1 Interrupt

/*!< UART2 Interrupt

/*!< UART3 Interrupt

/*!1< PWM1 Interrupt

*/
*/
*/
*/
*/
*/
*/
*/

*******************************************************/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

For device-specific peripherals, such as the WDT, LPC17xx.h defines a typedef’d struct and access macros
similar to the NVIC as described earlier. Referring to the LPC17xx System Memory Map shown in Figure 4,

the LPC1768 has two Advanced Peripheral Buses (APB), APB0O and APB1. Each APB peripheral area is 1

MB in size and is divided to allow for up to 64 peripherals. Each peripheral is allocated 16kB of space.
This simplifies the address decoding for each peripheral. From the system memory map it can be

observed that the APBO base address is 0x40000000, and the WDT is the first peripheral in that region.
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FIGURE 4 LPC17XX SYSTEM MEMORY MAP

Access definition for LPC17xx system peripherals are defined within LPC17xx . h with the fragment for
the WDT definitions shown below.

typedef struct
{
__ 10 uint8_t WDMOD;
uint8_t RESERVEDB[3];
__I0 uint32_t WDTC;
__0 uint8_t WDFEED;
uint8_t RESERVED1[3];
I uint32_t WDTV;
10 uint32_t WDCLKSEL;
} LPC_WDT_TypeDef;

#tdefine LPC_APBO_BASE (0x40000000UL )

/* APBO peripherals */
#define LPC_WDT_BASE (LPC_APBO_BASE + 0x00000)

#tdefine LPC_WDT ((LPC_WDT_TypeDef *) LPC_WDT_BASE )

The setup for the LPC17xx specific WDT follows a similar pattern to the NVIC. The initial struct defines
the WDT’s registers. Next we have the definition of the APBO based address, and the WDT’s base address.
Finally we have the symbol defined allowing standard access to the registers through the struct, i.e.

LPC_WDT->WDMOD

Also of note in the file are the #defines that configure the LPC17xx as having an MPU, using 5 bits for the
priority level, and using the default SysTickCofig (defined in core_cm3.h):
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12



Copyright © Feabhas Limited 2010

/* Configuration of the Cortex-M3 Processor and Core Peripherals */

#deﬁ'ne __MPU_PRESENT 1 /*!< MPU present or not

#define _NVIC_PRIO_BITS 5 /*1< Number of Bits used for Priority Levels
#define __vendor_sysTickconfig 0 /*!< set to 1 if different SysTick Config is used
1':/

File system_LPC17xx.h has, as stated previously, the common set of declarations:
o void SystemInit (void)
o uint32_t SystemCoreClock
o void SystemCoreClockUpdate (void)

The file system_LPC17xx. c has the accompanying definitions. For the LPC17xx the SystemInit
implementation sets up a variation of two PLLs, the peripheral clock sources and a Flash accelerator. The
actual configuration is managed through conditional compilation with the controlling symbols also being
defined in system_LPC17xx.c.

SystemCoreClock contains the system core clock frequency, which is also configured via a set of macros
based on the PLL configuration. The SystemCoreClockUpdate function resets the SystemCoreClock
based on the current PLL configuration, but is a run-time configuration rather than a compile time
configuration.

Finally under the startup->iar subdirectory is the file startup_LPC17xx.s. There are four major
parts to this file:

Import and export symbols
Interrupt Vector Table definition
Initial Reset Handler definition
Default interrupt handlers

B W=

At the head of the file is SECTION directive (. intvec) that is used by the linker to ensure the IVT is
placed at the correct address in memory. Next are a series of exported symbol declarations (PUBLIC) and
imported global symbols (EXTERN). Shown below are the external symbols SystemInit (from
system_LPC17xx.c)and __iar_program_start (which we shall see the relevance of shortly).

SECTION .intvec:CODE:NOROOT(2)

EXTERN __iar_program_start
EXTERN SystemInit
PUBLIC _ vector_table

Next is the actual definition of the IVT. DCD is an IAR assembler directive to generate a 32-bit (double
word) Constant Data. The first entry is the starting stack address. Here IAR use a directive that calculates
the end of the CSTACK memory segment. The CSTACK is defined in the linker script (again we shall see
this later). The second entry is the program counter initial value. This is set to the Reset_Handler, an
assembler routine defined within the same file.
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__vector_table

DCD sfe (CSTACK)

DCD Reset_Handler

DCD NMI_HandTer

DCD HardFault_Handler

DCD MemManage_Handler

DCD BusFault_Handler

DCD UsageFault_Handler
__vector_table_0xlc

DCD 0

DCD 0

DCD 0

DCD 0

DCD SVC_Handler

DCD DebugMon_Handler

DCD 0

DCD PendSV_Handler

DCD SysTick_Handler

; External Interrupts

DCD WDT_IRQHandler ; 16: watchdog Timer
DCD TIMERO_IRQHandler ; 17: TimerO
DCD TIMER1_IRQHandler ; 18: Timerl
DCD TIMER2_IRQHandler ; 19: Timer2

Referring back to the enum defined in LPC17xx.h, WDT is set as enum value zero. All the DCD’s before
the WDT_IRQHandler are common Cortex-M3 vector offsets. The WDT is the first LPC17xx specific entry
(i.e. there are 16 entries in the IVT before the WDT).

The next significant section of the startup_LPC17xx. s file is the definition for the Reset_Handler. This
simply calls the SystemInit function and then calls the IAR common entry point for the C runtime setup
(zeroing the bss, copying the idata, etc.) .

Reset_Handler

LDR RO, =SystemInit

BLX RO

LDR RO, =__iar_program_start
BX RO

Finally we have a set of default handlers for all defined interrupts in the IVT. Here the
SysTick_IRQHandler (as defined in the IVT with the DCD entry one before the WDT) is implemented as
an infinite loop. Therefore any unhandled interrupt will end up in a handler of this form. The most
interesting keyword to note here is “PUBWEAK”. PUBWEAK defines this label and code as a “weak” linkage
symbol. A weak symbol allows a compiler to substitute this definition with another (strong) definition if
found during link time. However, if no symbol is found this one will be used (eliminating the problem of
unresolved symbols). This will become clear later when we see how a strong symbol is created.

PUBWEAK SysTick_Handler

SECTION .text:CODE:REORDER(1)
SysTick_Handler

B SysTick_Handler

This covers the files under the directory structure Device Support. The final group of files are found at
Example/IAR/LPC17xx. Here there is a pre-built project for a given compiler (IAR) and development
board with an example of the specific device (NXP LPC17xx). The examples for the LPC17xx are all based
around the ARM/Keil MCB1700 Evaluation Board. The particular chip used on that board is the LPC1768.

Looking back at Figure 3 NXP LPC17xx / IAR structure, the files system_LPC17xx.c and
startup_LPC17xx. s are copies of the files found under the Device Support directory. There are also a
number of IAR EW specific files that are used by the IAR development environment; they define the:
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e Compiler include path for the M3 and LPC17xx common files
o ../../../CoreSupport
o ../../../DeviceSupport/NXP/LPC17xx

¢ Linker make config file
o $TOOLKIT_DIR$\CONFIG\generic_cortex.icf

The file “generic_cortex.icf” is used by the linker for resolving addresses for the different program
segments (code, static data, etc.). Examining this file (shown below) we can see two of the symbols we
looked at earlier. First the .intvec section is placed at address 0x00000000. Next the CSTACK is defined
to be 0x400 in size and placed in RAM.

/*###ICF### Section handled by ICF editor, don't touch! ****/

/*-Editor annotation file-*/

/* IcfEditorFile="$TOOLKIT_DIR$\config\ide\IcfEditor\cortex_vl_0.xml" */
/*-Specials-*/

define symbol __ ICFEDIT_intvec_start__ = 0x00000000;

/*-Memory Regions-*/

define symbol _ ICFEDIT_region_ROM_start__ = 0x00000000;

define symbol __ ICFEDIT_region_ROM_end__ = OXOQOO7FFFF;

define symbol _ ICFEDIT_region_RAM start__ = 0©x20000000;

define symbol _ ICFEDIT_region_RAM end__ = OX2000FFFF;

/*-Sizes-*/

define symbol _ ICFEDIT_size_cstack__ = 0x400;

define symbol _ ICFEDIT_size_heap__ = 0x800;

/*¥*¥** End of ICF editor section. ###ICF#t*/

define memory mem with size = 4G;

define region ROM_region = mem:[from __ ICFEDIT region_ROM_start__  to _ ICFEDIT_region_ROM_end__];
define region RAM_region = mem:[from __ ICFEDIT region_RAM_start__  to _ ICFEDIT_region_RAM end__];
define block CSTACK with alignment = 8, size = __ ICFEDIT size_cstack__ { };

define block HEAP with alignment = 8, size = _ ICFEDIT_size_heap__ {3}

initialize by copy { readwrite };

do not initialize { section .noinit };

place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec };
place in ROM_region { readonly };

place in RAM_region { readwrite, block CSTACK, block HEAP };

The file that brings the example together is main_LPC17xx. c. There are two parts specific to CMSIS. First
is the definition of a function SysTick_Handler. Atlink time this function will become the “strong”
definition for this symbol, and get placed in the IVT by the linker.

void SysTick_Handler(void) { . .
msTicks++; /* increment counter necessary in Delay() */

Also, at the start of main is a call to SysTick_Config defined in core_cm3.h (as symbol
__Vendor_SysTickConfigissetto 0in LPC17xx.h) and using SystemCoreClock from
system_LPC17xx.c.

if (SysTick_config(SystemCoreClock / 1000)) { /* Setup SysTick Timer for 1 msec interrupts */
while (1); /* Capture error */

We now have an overview of the CMSIS structure for one particular device and one particular compiler.
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WHAT IS DIFFERENT FROM COMPILER TO COMPILER?

If we look to use a different compiler for the same device then what, specifically, are going to be the
differences in CMSIS?

Within the headers and the C source files, different compiler variants are managed through conditional
compilation with compiler-specific directives. Currently CMSIS supports four compilers:

e ARM (Keil)

o __CC_ARM
e AR

o __ICCARM _
e GCC

o __GNUC__
e Tasking

o _ TASKING__

CORE_.CM3.H/C

Each compiler has a set of extended keywords; the two important ones used in CMSIS are:
e asm - this is classed as a “Common Extension” in C99 (J.5.10)
e inline - this is defined as a function specifier (6.7.4)

In core_cm3. h, the extended keywords redefined to a common symbol by compiler specific #defines as
shown in Table 1 common #defines.

TABLE 1 COMMON #DEFINES

__ASM asm asm asm asm

__INLINE __inline inline inline inline

When programming embedded systems it can be useful to get access processor specific operators. These
are referred to as intrinsic operations; examples for the Cortex-M3 include:

e nop - nooperation
e wfe - waitforevent
e wfi - waitforinterrupt

The intrinsic operations are also managed using conditional compilation, as shown in Table 2 intrinsics.
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TABLE 2 INTRINSICS

__no_operation __ASM volatile ("nop"); implemented as intrinsic
wii _wfi _ASM ("wfi"); __ASM volatile ("wfi"); implemented as intrinsic
wfe _wfe _ASM ("wfe"); _ASM volatile ("wfe"); implemented as intrinsic

Core register access requires assembler-based functions. These could be supplied in assembler files, but
for maintenance it is preferable to implement these using C function wrappers and the asm directive. For
example, the function uint32_t _ get PRIMASK(void) is declared in core_cm3.h (e.g.
__get_PRIMASK) and is conditionally defined in core_cm3. c. For example, previously we saw the AR
version; the code snippet below shows the GCC version of the same function.

#elif (defined (__GNUC__)) /*------------------ GNU Compiler --------------------- */
uint32_t _ get PRIMASK(void)
{
uint32_t result=0;
__ASM volatile ("MRS %0, primask" : "=r" (result) );
return(result);
}

STARTUP_DEVICE.S

As already mentioned CMSIS uses assembler files to manage startup. The startup assembler files (all
called startup_<Device>.s) are all compiler specific. Key items are the:

e VT definitions

e Implementation of default ISR handlers
o "weak" definitions

e Import/Export directives
o E.g SystemInit

One important facet to note is that the implementers of CMSIS have chosen to use anonymous
struct/union in the type definitions of device registers. For example, the snippet of code below shows the
use of anonymous unions.
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typedef struct
{
union {
_ I uint8_t RBR;
__0 uint8_t THR;
__I0 uint8_t DLL;
uint32_t RESERVED®;
s
union {
__I0 uint8_t DLM;
__I0 uint32_t IER;

}s

} LPC_UART_TypeDef;

The anonymous union shown here allows the members RBR, THR and DLL to all resolve to the same
address (as you'd expect from a union). However, the difference is that by being part of an anonymous
union they don’t create an extra level of indirection, so if we have our pointer to the struct defined:

#define LPC_UARTO ((LPC_UART®_TypeDef *) LPC_UART@_BASE )

Then we can access the symbols directly as:

LPC_UARTO->RBR
LPC_UARTO->THR
LPC_UARTO->DLL

Note, however, anonymous structures/unions are a defined part of the C++ language but they are not part
of the current C standard (which, ironically, breaks rule 1.1 of MISRA-C:2004).
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1
CMSIS_V1P30
—
Cortex-M3
o — | 1 1
Device NXP LPC17xx startup arm
support

FIGURE 5 LPC17XX COMPILER SPECIFIC FILES

LPC17xx.h

system_LPC17xx.h

system_LPC17xx.c

1

startup_LPC17xx.s

gece

startup_LPC17xx.s

iar

startup_LPC17xx.s

Referring to Figure 5 LPC17xx compiler specific files, the files system_LPC17xx.h and
system_LPC17xx.c have no compiler dependences. However LPC17xx. h requires support for
anonymous struct/union, but only for the ARM(Keil) compiler.

#if defined ( __CC_ARM
#pragma anon_unions
#tendif

)

Even though Tasking is one of the compiler directives used within the CMSIS core files, there are no
examples using Tasking for Device Support or Examples.
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STARTUP_LPC17XX.S

The key variations in startup_LPC17xx. s for the different compilers are shown in Table 3
startup_lpc17xx.s variations.

TABLE 3 STARTUP_LPC17XX.S VARIATIONS

arm DCD SysTick_Handler SysTick_Handler PROC IMPORT SystemInit EXPORT __ Vectors
EXPORT SysTick_Handler [WEAK]
B o
ENDP
iar DCD SysTick_Handler PUBWEAK SysTick_Handler EXTERN SystemInit PUBLIC _ vector_table

SECTION .text:CODE:REORDER(1)
SysTick_Handler
B SysTick_Handler

gcc .long SysTick_Handler .weak  SysTick_Handler EXTERN SystemInit .globl
.type SysTick_Handler, %function __cs3_interrupt_vector_cor
SysTick_Handler: tex_m

B o
.size  SysTick_Handler, . -
SysTick_Handler

Also in startup_LPC17xx.s we have the Reset Handlers. Shown below are the examples for ARM:

Reset_Handler  PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main

LDR RO, =SystemInit
BLX RO
LDR RO, =__main
BX RO
ENDP
and GCC:
__cs3_reset_cortex_m:
.fnstart
LDR RO, =SystemInit
BLX RO
LDR RO, =_start
BX RO
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EXAMPLES DIRECTORY

Finally, in the examples directory we can see for each compiler there is a separate directory structure.
The example code is all based on targeting the Keil MCB1700 Evaluation Board. Note that the GCC
example is based around the Code Sorcery G++Lite environment (10).

—
CMSIS_V1P30

1

Cortex-M3

1

Device
support

1

Examples

FIGURE 6 COMPILER SPECIFIC DEVICE SUPPORT

arm LPC17xx
— —

iar LPC17xx
1 1

Sorcery G++Lite LPC17xx

main_LPC17xx.c

system_LPC17xx.c
startup_LPC17xx.s

Keil RealView specific

main_LPC17xx.c

system_LPC17xx.c

startup_LPC17xx.s

IAR EW specific files

main_LPC17xx.c

system_LPC17xx.c

startup_LPC17xx.s

GCC Linker script for Cortex-M3
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WHAT IS DIFFERENT FROM CHIP TO CHIP?

In the previous section we examined the differences in CMSIS for different compilers. Here we take an
alternative viewpoint examining the differences when comparing two devices. Here we shall use the
Cortex-M3 and IAR EW as common factors. We shall compare support for CMSIS for the NXP LPC17xx
compared with the STMicro STM32F10x.

NXP LPC17XX

The NXP LPC17xx family of microcontrollers supports variations on how much on-chip Flash and SRAM
memory there is and the support for various peripheral devices such as Ethernet, USB, CAN, I2S, etc.
(Figure 7 NXP LPC17xx Architecture).

Upto B4 KB | Upto512 KB CPUPLL
SHAM FLASH
Brown Out Detect
SRAM FLASH
Controller Accelerator Power On Reset
¢ $ ¢ { $

| Multi-layer AHB Matrix ‘
¢ : ]
ECCTr T e e Er T

Advanced Perlpheral Bus

FIGURE 7 NXP LPC17XX ARCHITECTURE

The CMSIS codebase covers all family variants within the generic device-specific files:
o LPC17xx.h
o system_LPC17xx.h
o system_LPC17xx.c

and the compiler-specific startup file (startup_LPC17xx.s).

These files have been written to support the “broadest” microcontroller currently in the family
(LPC1768) which supports the most memory (Flash and SRAM) and has support for all the possible
peripherals.
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STM32F10X

STMicroelectronics define the STM32F10x family in the following way (11):

o

o

o

o

o

Connectivity line (107 and 105)
Performance line (103)

USB Access line (102)

Access line (101)

Value line (100)

However, CMSIS define the STM32F10x family the following way:

o

o

o

o

STM32F10X_CL: Connectivity line devices
STM32F10X_HD: High density devices
STM32F10X_LD: Low density devices

STM32F10X_MD: Medium density devices

The density definition runs perpendicular to the line definitions (i.e. there are high, medium and low
density versions of the performance line devices).
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DEVICE SUPPORT

Within Device Support the first key difference is that all the NXP code has ARM copyright notices,
whereas the ST code has an STMicroelectronics copyright notice throughout. Also compiler support for
the STM32 includes a variation on GCC for the ride7 environment (Figure 8).

[—
CMSIS_V1P30
] Copyright (C) 2009 ARM ] arm
Limited. All rights
Cortex-M3 ]
reserved
= gcc
1 1 1 1
2o NXP | tpcazxx || startup | iar
support
1 1 1 1
=1 Sil} — STM32F10x | startup B arm
1
gcc
COPYRIGHT 2009 —
STMicroelectronics
—{ gcc (ride7)
1
— iar

FIGURE 8 DEVICE SUPPORT
The ride7 (12) environment is supplied with STM32 Primer devices (13).

One slightly unusual part of the Device Support area is for the startup files. For arm, iar and gcc (ride7), all
four device variants have their own startup assembler file:

o startup_stm32fiex_cl.s

o startup_stm32f10x_hd.s

o startup_stm32fiex_1d.s

o startup_stm32fi10x_md.s
whereas for gcc, only two of the four are supported:

o startup_stm32f1lOx_cl.s

o startup_stm32f10x_hd.s
I'm sure there is a good reason...

Comparing Device Support for IAR for the two devices, the major difference (Figure 9) is there is only
one startup_LPC17xx. s file; whereas there are the four different startup_stm32f10x_XX. s files.
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1
CMSIS_V1P30
— 1
Cortex-M3
1 1 1 1 1
Lo NXP LPC17xx startup iar
support

LPC17xx.h startup_LPC17xx.s
system_LPC17xx.h

system_LPC17xx.c

1 1
ST STM32F10x startup iar

stm32f10x.h startup_stm32f10x_cl.s

system_stm32f10x.h startup_stm32f10x_hd.s
system_stm32f10x.c startup_stm32f10x_Id.s

startup_stm32f10x_md.s
FIGURE 9 DEVICE SUPPORT M3/IAR
How does the stm32f10x. h differ from the LPC17xx. h?
o The STM32 does not provide an MPU - #define _ MPU_PRESENT ©
o The STM32 uses 4 Bits for the Priority Levels of the NVIC - #define __ NVIC_PRIO_BITS 4
o Itdoesn’t define its own SysTick Config - #define __ Vendor_SysTickConfig @

As with LPC17xx.h, the Cortex-M3 common initial 16 interrupt vectors for the M3 are defined followed by
further defines for the STM32 specific interrupts. With the STM32F10x family, interrupt numbers 0-18
are common, whereas 19-42/62/67 are device (CL, HD, LD & MD) specific. Conditional compilation is
used, based on device type, to manage these variants in the interrupt structure. Further there are the
STM32 typedefs for peripherals types and macros for peripheral access.

system_stm32f10x.h is almost identical to system_LPC17xx. h, the only differences are in comments
(e.g. copyright notice). Incorrectly, the system_stm32f10x.h doesn't include <stdint.h> but uses
uint32_t.

system_stm32f10x. c defines SystemInit. The supplied code initializes the flash interface and the PLL
and updates the SystemFrequency variable. SystemCoreClockUpdate is an empty routine.
SystemCoreClock is configured using conditional compilation.
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IAR EXAMPLES

The examples supplied for IAR include two variants of the STM32 processor, one for the STM32F103 and
one for the STM32F107. The 103 example is based on a high density device variant, whereas the 107 is

based on a connectivity line device.

—
CMSIS_V1P30

—
Cortex-M3

1

Device
support

1 1

main_LPC17xx.c

Examples — iar

system_LPC17xx.c
LPC17xx
startup_LPC17xx.s
IAR EW specific files
main_STM32F103.c
] system_stm32f10x.c
STM32F103
startup_stm32f10x_hd.s

IAR EW specific files

Board: Keil MCBSTM32E Evaluation Board
Device: STM32F103VZT6

main_STM32F107.c
I

system_stm32f10x.c
STM32F107

startup_stm32f10x_cl.s

IAR EW specific files

Board: Keil MCBSTM32C Evaluation Board
Device: STM32F107VCT6

FIGURE 10 IAR EXAMPLES NXP & ST
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Finally, looking at Figure 11, there are examples for ARM, IAR and CodeSourcey for the LPC17xx
and both STM32F10x’s, whereas the Ride7 environment only has examples for the STM32

devices.

1

CMSIS_V1P30

1

Cortex-M3

1

Device

support

1

Examples

1 1
arm B LPC17xx
1
— STM32F103
1
= STM32F107
1 1
iar LPC17xx
1
STM32F103
SorceryG++Lite 11 LPC17xx STM32F107
1
— STM32F103
1
— STM32F107 1
1]
. STM32F103
ride?7
1
STM32F107

FIGURE 11 DEVICE EXAMPLES
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OVERALL THE VENDOR/DEVICE SUPPORT

Overall the Vendor Support in CMSIS v1.30 is summarized in Table 4 Device Vendor Support.

TABLE 4 DEVICE VENDOR SUPPORT

LPC13xx STM32F103
AT91SAM3U EFM32 LM3S TMPM330

LPC17xx STM32F107

ARM | | | | | M

IAR M | | | M

Ride7

K B K

Gee 7 |
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BEYOND THE CORE

Everything we’ve discussed so far relates to how different compilers and microcontrollers support the
Cortex-M3 core and CMSIS. A further area of CMSIS, which currently appears to be less well supported, is
the Middleware Access Layer (MAL). The intent of the MAL is that peripheral-devices common across
many microcontrollers, but not actually part of the Cortex-M3 core, can also be abstracted to a common
interface.

The code for the MAL was supplied as part of the CMSIS V1.20 download (14), but is not included in
V1.30.

Initially the MAL defined the following:
o CMSIS UART Device
o CMSIS SPI Device
o CMSIS Ethernet Device

All devices have a similar structure. For example the CMSIS UART Device attempts to provide a standard
interface to a USART. The intent is that the file structure for these middleware devices will follow a
similar structure to the core, e.g. a set of common files

o UartDev.h - Global defines and structure definitions for general UART Device interface.
o UartDev_Device.h - Device dependent definitions of the device-specific UART Device Driver.
o UartDev_Device.c - Device specific UART Device Driver

In UartDev.h a common structure is defined based on function pointers (similar to a C++ v-table). A
particular implementation will populate these with device-specific definitions. As of CMSIS V1.20, there
are only examples for the STM32F10x (i.e. UartDev_STM32.h and .c).

UART Device
I0 Block Structure

typedef struct {

/* changed by the user application before call to Init. */

UartDev_CFG  Cfg;

/* Initialized by UART driver. */

int (*Init) (void); /*1< Initialize */

int (*UnInit) (void); /*!< unInitialize */

int (*BufTx) (void *pData, int* pSize, unsigned int flags); /*!< Transmit */

int (*BufRx) (void *pData, int* pSize, unsigned int flags); /*!< Receive */

int (*BufFlush)(void); /*!< Flush buffer */
} UartDev_IOB;
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IN SUMMARY

Adoption of CMSIS has the potential for huge benefits to many different interested parties:

e The compiler vendors can work with the silicon vendors to quickly support new devices

e Application engineers will have a selection of toolsets available for their microcontroller of
choice

e RTOS vendors can port their RTOS to new devices quickly

e Common middleware support means higher-level middleware should need little or no porting
(e.g. IwlP is a light-weight implementation of the TCP/IP protocol suite)

e And of course ARM establish themselves as the de facto standard for embedded 32-bit
microcontroller cores (and make a tidy fee in licensing cores)

It’s hard to see why CMSIS isn’t going to be widely adopted and accepted with open arms (no pun
intended).

All that said there are some concerns; the key ones being:

e Who is going to police the CMSIS implementations and ensure quality?
o Surely it’s got to be ARM? But are they then going to commit dedicated resources to
CMSIS?
e Who is going to develop Device Support and Examples for new devices?
o It's expected to be the silicon vendors, but how well do they know the compiler
optimizations and what resources will they throw at it?

Why these concerns? While examining the CMSIS code base a few, mainly minor, items just got me
pondering.

Take for example inlining. The inline keyword suggests to the compiler that it compiles a C function
inline, if it is sensible to do so. However GCC inline does not force the compiler to actually inline the body
of a function defined with __INLINE attribute.

The semantics of __forceinline are exactly the same as those of the C++ inline keyword. The compiler
attempts to inline a function qualified as __forceinline, regardless of its characteristics. However, the
compiler does not inline a function if doing so causes problems.

Conversely the __get_xxx, _ set_xxx, _ LDREX, _ STREXgroups of C-wrapped assembly functions
are implemented as regular functions as opposed to static inline functions.

Coding style wise, core_cm3. c does not including core_cm3.h. Not a big deal here, but certainly not
good practice.

In the SMT32 tree, there are common files having same version number but actually with minor
differences (albeit only in the comments). This really does beg the question regarding configuration
control.

Finally you've got to question the use of features that are not part of C such as anonymous unions. From a
pragmatic viewpoint I understand the rationale for this, but to make a statement about MISRA-C
compliance, goes against the grain a bit.

Finally, I would expect the Cortex-MO0 audience (and a lot of the M3 audience) to see CMSIS as too
complicated and heavyweight (as in this paper it’s taken nearly 6000 words to try and give a sensible
overview!).

In summary CMSIS has real promise, but there is still work to be done.
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