
1

CMSIS-RTOS

Niall Cooling

Feabhas Limited

www.feabhas.com

Abstract

In early 2012 ARM announced the latest iteration of the Cortex Microcontroller Interface

Standard (CMSIS), version 3.0. The major evolution of the standard is the introduction of

standardized Application Programming Interface (API) for Real-Time Operating Systems

(RTOS). This paper examines the CMSIS-RTOS API, looks at how different RTOSs are

supported and reviews the implications for both application engineers and RTOS vendors.

All product names are trademarks or registered trademarks of their respective owners.

2

Introduction
Over the last decade, ARM based processors and microcontrollers have grown to become one of the most dominant

architectures in the embedded computing world. From their very early days, ARM has looked to standardize, where

possible, certain aspects of software development and have openly published the Base Standard Application Binary

Interface (BSAPI) and the ARM Architecture Procedure Calling Standard (AAPCS). These documents detail how

compilers (specifically C and C++) must use registers, the stack, and memory layout for structures (as an example).

With the release and development of the new generation of ARM cores, collectively known as the Cortex family,

ARM have looked to further this approach by publishing the Cortex ™ Microcontroller Software Interface Standard

(CMSIS), pronounced “cim-sis”. In February of 2012, ARM announced the third version of CMSIS, which added to the

definition of an abstract layer for Real-Time Operating Systems (RTOS).

ARM Cortex™ Family
The Cortex family breaks down into three major profiles:

 Cortex-A - “Application” processors that implement a virtual memory system based on a Memory

Management Unit (MMU) and symmetrical Multi-core options. These are powerful enough to run

higher-level Operating Systems such as Linux, Android, and some Windows variants.

 Cortex-R - “Real-Time” processors that are targeting high performance coupled with a safety model based on

a Memory Protection Unit (MPU – think MMU without virtual memory).

 Cortex-M - “Microcontroller” aimed at the smaller faster system, where cost, size and power are major

factors in processor choice. The M-Profile optionally supports an MPU; there are also Smartcard variants.

It is important to note that CMSIS is designed only to support the Cortex-M profile of microcontrollers. Within the

Cortex-M profile there are currently seven variants:

 Cortex-M0

 Cortex-M0+

 Cortex-M1

 SC000

 Cortex-M3

 Cortex-M4

 SC300

with the majority of designs being based around the Cortex-M3 (as it was also the first Cortex-M IP available).

CMSIS Versions
CMSIS v1.x

The initial version of CMSIS was published in November 2008, covering the Cortex-M3 and Cortex-M0 cores. CMSIS

v1.x (Figure 1 CMSIS v1.x) defined:

 Core Peripheral Access Layer

 Core Register Access

 Instruction Access

 NVIC Access Functions

3

 SysTick Configuration Function

 Instrumented Trace Macrocell (ITM)

 Cortex-M3 ITM Debug Access (ITM_SendChar / ITM_ReceiveChar)

Figure 1 CMSIS v1.x

CMSIS v2.x
With the development and announcement of the Cortex-M4, CMSIS was extended to take account of the

Single-Instruction Multiple-Data (SIMD) capabilities and the (optional) FPU of the M4. CMSIS v2.x added a DSP

software library, optimised for the M4, to the v1.x core functions. Features supported by the DSP library include:

 Basic math functions

 Fast math functions

 Complex math functions

 Filters

 Matrix functions

 Transforms

 Motor control functions

 Statistical functions

 Support functions

 Interpolation functions

CMSIS v3.x
Version 3.0 of CMSIS was announced at Embedded World 2012 in Nuremburg, Germany. Its major content was a

standardized API for Real-Time Operating Systems. The initial release supported Keil’s RTX RTOS with the

CMSIS-RTOS API under Open Source License.

CMSIS v3.x also added support for System View Description (SVD) XML files.

4

Quasi-concurrent programming
Unfortunately the term “RTOS” is widely misused and abused. The context here is a single program that is split in to

multiple threads of execution using processor time-sharing (quasi-concurrent), known either as multi-threading or

multi-tasking. However the key is that there is no MMU support, thus no virtual memory.

The term “Real-Time Operating System” or more commonly, “RTOS” can actually mean different things to different

people. In this paper we shall use the following terminology:

 Kernel (RTK)

o Scheduling (Priority - pre-emptive, Round-robin)

o Mutual exclusion (semaphore, mutex)

 Executive (RTX)

o Inter-task communication & synchronisation (Message Queue, Flags)

o Dynamic memory management (fixed-block heap)

 Real-Time Operating System (RTOS)

o File management System, e.g. Flash file system, fprintf

o Networking, e.g. TCP/IP, CAN

o Graphical User Interface support, e.g. OpenGL, Embedded Qt

At Feabhas, we refer to this as the “RTOS Onion”, Figure 2. This distinction is important as the current CMSIS-RTOS

API covers the RTK and RTE functionally, it does not include APIs for file management, networking, etc. Nevertheless,

for simplicity, I’ll continue to use the term RTOS in its general sense (RTK, RTX and RTOS).

Figure 2 RTOS Onion

5

RTOS APIs
So why create an abstract API? If we first look at a couple of example RTOS API’s we can observe that each one is

propriety. For example if we take a minimal amount of code to create a task and do a short delay we can see from

how different the code looks:

// Example 1: Keil RTX Example

OS_TID t_blinky; // Declare a task ID for blink

__task void blinky(void) {
 while(1) {
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0
 os_dly_wait (50); // delay 50 clock ticks
 }
}

__task void init (void) {
 t_blinky = os_tsk_create (blinky, 1); // Create a task "blinky" with priority 1
 os_tsk_delete_self ();
}

/* Example 2: FreeRTOS Example */

void vTaskCode(void* pvParameters) {
 for(;;) {
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1];
 vTaskDelay(50); // delay
 }
}

/* Function that creates a task. */
void vOtherFunction(void) {
 static unsigned char ucParameterToPass;
 xTaskHandle xHandle;
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY, &xHandle);
 vTaskDelete(xHandle);
 }

/* Example 3: Segger emBOS Example */

OS_STACKPTR int StackHP[128]; /* Task stacks */
OS_TASK TCBHP; /* Task-control-blocks */

/**/
static void TaskEx(void* pData) {
 while (1) {
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1];
 OS_Delay (50);
 }
}

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 OS_CREATETASK_EX(&TCBHP, "HP Task", TaskEx, 100, StackHP, (void*) 50);
 OS_Start(); /* Start multitasking */
 return 0;
}

In the above examples, the task-create functions take differing number of parameters and/or different parameter

arguments. In addition, even though the task-delay functions take a simple argument, their naming convention is

quite different. This naming convention, naturally, propagates through each RTOS’s API.

6

This is an obvious problem if either a codebase has to be ported to a new RTOS, or must support different platforms

with different RTOSs. It is not uncommon to find in the more mature/experience organisations that specify their

own, company specific, RTOS APIs and develop their own adaption layers1.

CMSIS v3.x Architecture
Figure 3 shows an overview of the current CMSIS architecture. It is important to understand that CMSIS-RTOS is not

an RTOS itself, but purely an adaption layer. There shall always be a requirement for an actual RTOS. The main

interface to the application is through the supplied file “cmsis_os.h”

Figure 3 CMSIS v3.x Architecture

As an example, to create the example code shown previously using the CMSIS-RTOS API, the code would look similar

to the following (this code is based on the RTX CMSIS-RTOS example header):

#include "cmsis_os.h" // CMSIS RTOS header file

osThreadId thread1_id;

void job1 (void const *argument) { // thread function 'job1'
 while (1) {
 : // execute some code
 osDelay (10); // delay execution for 10ms
 }
}

// define job1 as thread function
osThreadDef(job1, osPriorityAboveNormal, 1, 0);

int main (void) {
 …
 thread1_id = osThreadCreate(osThread(job1), NULL);
 …
}

It is interesting to note that CMSIS-RTOS has chosen to use the term “thread” in preference to the more common
term ”task” to represent a unit of execution.

1
 In the automotive would there is an existing “standard” API called OSEK.

7

CMSIS-RTOS Features
The API devised by ARM and the CMSIS group covers the following functionality:

 Thread Management

o Define and create threads

o Thread control, e.g. delay, yield and priority management

o Timers for callbacks

 Mutual Exclusion

o Counting Semaphore

o mutex

 Inter-task Communication & Synchronisation

o Signals

o Message Queues

o Mail queue (mailbox)

 Memory Management

o Memory pools

As previously mentioned, an application programming to the CMSIS-RTOS API needs to include the file

“cmsis_os.h”. This file declares the function prototypes and defines necessary structures, types and enums, etc.

Breaking down the simple task create code, we can examine some of the key items.

First, in cmsis_os.h we can see the declaration for osThreadCreate, taking two arguments, a pointer to the type

osThreadDef_t and a void pointer:

osThreadId osThreadCreate (osThreadDef_t *thread_def, void *argument);

The osThread_t is a typedef for the main structure used in the task create. As different RTOS require a different

number of parameters, two options are available; either use a void* or use a modifiable typedef; CMSIS-RTOS went

with the second option. This means that each RTOS supporting the CMSIS-RTOS may require its own variant of the

cmsis_os.h. We shall look at this shortly under the section on porting. The definition of osThreadDef_t is shown

below:

/// Thread Definition structure contains startup information of a thread.
/// \note CAN BE CHANGED: \b os_thread_def is implementation specific in every CMSIS-RTOS.
typedef const struct os_thread_def {
 os_pthread pthread; ///< start address of thread function
 osPriority tpriority; ///< initial thread priority
 uint32_t instances; ///< maximum number of instances of that thread
 uint32_t stacksize; ///< stack size requirements in bytes
} osThreadDef_t;

Within the osThreadDef_t structure are two more CMSIS-RTOS types, os_pthread and osPriority.

os_pthread is a typedef for a function pointer, taking a const void* as a parameter with a void return type.

/// Entry point of a thread.
/// \note MUST REMAIN UNCHANGED: \b os_pthread shall be consistent in every CMSIS-RTOS.
typedef void (*os_pthread) (void const *argument);

The osPriority is an enum for the available priorities for each thread. Note that currently only 7 priority levels are

supported, with a high number being the higher priority.

/// Priority used for thread control.
/// \note MUST REMAIN UNCHANGED: \b osPriority shall be consistent in every CMSIS-RTOS.
typedef enum {
 osPriorityIdle = -3, ///< priority: idle (lowest)
 osPriorityLow = -2, ///< priority: low

8

 osPriorityBelowNormal = -1, ///< priority: below normal
 osPriorityNormal = 0, ///< priority: normal (default)
 osPriorityAboveNormal = +1, ///< priority: above normal
 osPriorityHigh = +2, ///< priority: high
 osPriorityRealtime = +3, ///< priority: realtime (highest)
 osPriorityError = 0x84, ///< system cannot determine priority or thread has…
} osPriority;

Finally, there are two key macro’s designed to make thread definition and creation simple. osThreadDef creates an

instance of the osThreadDef_t structure with a unique name and osThread wraps the structure instance to be

passed to the osThreadCreate function (remember the ## is macro concatenation).

#define osThreadDef(name, priority, instances, stacksz) \
osThreadDef_t os_thread_def_##name = \
{ (name), (priority), (instances), (stacksz) };

#define osThread(name) \
&os_thread_def_##name

Taking the originally CMSIS-RTOS application code:

#include "cmsis_os.h" // CMSIS RTOS header file

void job1 (void const *argument) { // thread function 'job1'
 …
}

// define job1 as thread function
osThreadDef(job1, osPriorityAboveNormal, 1, 0);

int main (void) {
 …
 thread1_id = osThreadCreate(osThread(job1), NULL);
 …
}

we can examine the API macro expansion to see the structure object definition and the address of the object being

passed as an argument:

void job1 (void const *argument) { // thread function 'job1'
 …
}

// define job1 as thread function
osThreadDef_t os_thread_def_job1 = \
{ (job1), (osPriorityAboveNormal), (1), (0) };

int main (void) {
 …
 thread1_id = osThreadCreate(&os_thread_def_job1 , NULL);
 …
}

Finally, looking at the CMSIS-RTOS adaption layer example provided with CMSIS v3.x, we can trace the code through

to osThreadCreate to a call to svcThreadCreate2 (in file rt_CMSIS.c):

// Thread Public API
/// Create a thread and add it to Active Threads and set it to state READY
osThreadId osThreadCreate (const osThreadDef_t *thread_def, void *argument) {
 if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
 if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) {
 // Privileged and not running
 return svcThreadCreate(thread_def, argument);
 } else {
 return __svcThreadCreate(thread_def, argument);
 }
}

2
 The two variants svc and __svc manage the Cortex-M protection model, but __svc ultimately calls svc

9

Which finally calls the RTX API rt_tsk_create (this is the same as os_tsk_create seen earlier):

// Thread Service Calls
/// Create a thread and add it to Active Threads and set it to state READY
osThreadId svcThreadCreate (const osThreadDef_t *thread_def, void *argument) {
 P_TCB ptcb;
…
 tsk = rt_tsk_create(// Create task
 (FUNCP)thread_def->pthread, // Task function pointer
 (thread_def->tpriority-osPriorityIdle+1) | // Task priority
 (thread_def->stacksize << 8), // Task stack size in bytes
 stk, // Pointer to task's stack
 argument // Argument to the task
);
…
}

CMSIS v3.x Adaption
The downloadable version CMSIS-RTOS, by default, supports ARM/Keil’s RTOS RTX. However, what if we would like
to use a different RTOS but continue to use CMSIS-RTOS? For an RTOS to support the CMSIS-RTOS API two files need
adapting; cmsis_os.h and cmsis_os.c. As an example, we will look at calling the FreeRTOS API (this is based on
work by the FiFi-SDR Project). To create a CMSIS-RTOS thread, the adaption layer needs to map the
osThreadCreate function call to the FreeRTOS xTaskCreate function call (Figure 4).

Figure 4 CMSIS-RTOS Adaption

The prototype for xTaskCreate is:

Figure 5 xTaskCreate Function Prototype

A couple of key changes are required compared to the RTX adaption:

10

 FreeRTOS takes as a parameter (pcName) as task name as a C Null-Terminated Byte String (NTBS)3.

 The stack size for FreeRTOS is in 32-bit words, whereas osThreadDef_t stacksize is in bytes; also the

stack size must not be smaller than the FreeRTOS constant configMINIMAL_STACK_SIZE.

 The priorities for FreeRTOS cannot be a negative number (osPriorityIdle is -3), with 0 (zero) being the

lowest priority for FreeRTOS.

Assuming we wanted to support task naming with FreeRTOS, then first cmsis_os.h needs copying and modifying.
To allow a task name to be supplied as a parameter, we modify the osThreadDef_t to include a const char*
element and modify the macro osThreadDef to automatically create the thread name from the thread function
name (using the macro expansion #).

/// Thread Definition structure contains startup information of a thread.
/// \note CAN BE CHANGED: \b os_thread_def is implementation specific in every CMSIS-RTOS.
typedef const struct os_thread_def {
 const char * name;
 os_pthread pthread; ///< start address of thread function
 osPriority tpriority; ///< initial thread priority
 uint32_t instances; ///< maximum number of instances of that thread
 uint32_t stacksize; ///< stack size requirements in bytes
} osThreadDef_t;

#define osThreadDef(name, priority, instances, stacksz) \
osThreadDef_t os_thread_def_##name = \
{ (#name), (name), (priority), (instances), (stacksz) };

In cmsis_os.c the CMSIS-RTOS attributes are now mapped to the FreeRTOS attributes. The stack size is converted

from bytes to words; the extra osThreadDef_t attribute is passed as the task name, and a helper function converts

CMSIS-RTOS priorities to FreeRTOS priorities.

static unsigned portBASE_TYPE makeFreeRTOSPriority (osPriority priority);

/// Create a thread and add it to Active Threads and set it to state READY.
/// \param[in] thread_def thread definition referenced with \ref osThread.
/// \param[in] argument pointer that is passed to the thread function as start argument.
/// \return thread ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osThreadCreate shall be consistent in every CMSIS-RTOS.
osThreadId osThreadCreate (osThreadDef_t *thread_def, void *argument)
{
 xTaskHandle handle;
 uint32_t stackSize;

 stackSize = thread_def->stacksize ? thread_def->stacksize / 4 : configMINIMAL_STACK_SIZE;

 xTaskCreate((pdTASK_CODE)thread_def->pthread,
 (const signed portCHAR *)thread_def->name,
 stackSize,
 argument,
 makeFreeRTOSPriority(thread_def->tpriority),
 &handle);

 return handle;
}

/* Convert from CMSIS type osPriority to FreeRTOS priority number */
static unsigned portBASE_TYPE makeFreeRTOSPriority (osPriority priority)
{
 unsigned portBASE_TYPE fpriority = tskIDLE_PRIORITY;

 if (priority != osPriorityError) {
 fpriority += (priority - osPriorityIdle);
 }

 return fpriority;
}

3
 FreeRTOS doesn’t actually make any use of this, it is included purely as a debugging aid

11

Further ports of the CMSIS-RTOS are appearing, for example:

 Abassi RTOS - a commercial RTOS from Code Time Technologies, Ottawa, Ontario, Canada

 RT-Thread - an open source real-time operating system developed by the RT-Thread Studio based in China

Code Time Technologies (Abssi RTOS) have published the code size requirements when using CMSIS, as shown in the

table below. They attribute much of the code size due to the requirements of the CMSIS-RTOS API error return

codes, which need converting and verifying in the CMSIS layer rather than the native RTOS API.

There are three major issues to be addressed when adapting the CMSIS-RTOS layer to support another RTOS:

1) Features that CMSIS-RTOS API defines but the RTOS doesn’t support

2) Features that the RTOS supports but CMSIS-RTOS API doesn’t define

3) Behaviour defined for CMSIS-RTOS API differs from RTOS API behaviour

Item (1) is addressed through a set of #define in cmsis_os.h , however, it is not clear what the policy is regarding

items (2) and (3).

Some Reactions
In terms of CMSIS-RTOS, it is still relatively early days; so whether large scale adoption of CMSIS-RTOS will happen is

yet to be clear (there are currently nearly 30 RTOSs listed on the ARM website supporting Cortex-M). An interesting

view was given by Richard Barry, creator of FreeRTOS, in the EE Times “Who wins when Cortex-M adds RTOS?”

The creator of ChibiOS/RT RTOS, Giovanni Di Sirio, is stronger in his viewpoint:

I must say that I don't particularly like the CMSIS RTOS API, it requires things that in ChibiOS I intentionally left out
and that would hurt performance and/or safety, others things are simply too limiting.

http://www.eetimes.com/electronics-blogs/industry-comment/4237614/Who-wins-when-Cortex-M-adds-RTOS-abstraction-layer-?cid=NL_IndustrialControl&Ecosystem=industrial-control

12

Summary
The development of CMSIS-RTOS opens up lots of possibilities.

First, and foremost, it allows application programmers to more readily port code from one RTOS to another (possibly

from a royalty based model to a royalty free model).

Second, for a company such as Feabhas, involved in teaching the principles of concurrency and Real-Time Operating

Systems, being able to reference a standardised API (as opposed to either proprietary or POSIX based ones) allows us

to concentrate on the principles rather than the API specifics.

Finally, and probably the most significant, is easier library support. Complex libraries such as networking and USB

stacks have significant dependency on an RTOS API for managing interrupts and delays. Being able to standardize

this dependency means once a protocol stack has been ported to CMSIS-RTOS, it should, in general, be a simpler job

to support the same library across other CMSIS-RTOS implementations.

Nevertheless, some people have expressed concerns that we end up with a “lowest common denominator” with

respect to the API and the cost of memory and performance isn’t appropriate when using an adaption layer for a

small microcontroller.

It is probably too early to tell whether CMSIS-RTOS will get widespread support; ultimately it will be lead by

customer demand.

