TASKS, THREADS AND PROCESSES, CONFUSED?

Niall Cooling
Feabhas Ltd.
www.feabhas.com

Copyright © Feabhas Ltd. 1995-2010

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED?

Copyright © Feabhas Ltd. 1995-2010

Introduction

With the growth of the use of commercial off-the-shelf real-time operating systems, the terms
task, thread and process are widely used in magazines, conference papers and marketing
literature. Everyone using these terms has a very clear idea of their meaning. However, this
paper intends to demonstrate that these seemingly innocuous terms are ambiguous and their
exact meaning is dependent on the authors programming background.

Drive towards concurrent programming

The programming language “C” has undoubtedly become the most popular language for
developing embedded systems over the last decade. It is a sequential language, in that code
developed follows the basic structure of most standard programming languages; sequence,
selection (if, case) and iteration (while, for). There is no inherent support within the language
to build parts of the program that can execute concurrently.

Modern embedded systems have a growing requirement to service and respond to numerous
asynchronous and synchronous inputs. Developing a sequential program that can meet real-
time requirements is incredibly difficult (and quite an art). A simpler programming model
than one large sequential C program, is to separate the code into multiple programs, each of
which is written as a block of smaller sequential code. Each “sub-program” has a clearly
defined task! (i.e. detecting, servicing and reacting to a given input).

Breaking the program up into a set of tasks doesn’t address the issue of allowing them to run
concurrently. One approach is to place each task on a separate processor referred to as multi-
processing. This model has many advantages, most of all performance. Nevertheless, for many
embedded systems (especially high volume) cost is the overriding factor and this solution
isn’t practicableZ.

Many small embedded systems employ a foreground/background programming model to
achieve some level of responsiveness [LAB98]. This involves writing a background loop in the
main program that calls the tasks (written as functions) to perform the appropriate work
when required. Interrupt service routines (ISRs) are used to react to the asynchronous
requests. When the ISR is invoked, due to a demand for service from an external peripheral, it
pre-empts the background loop and executes (this pre-emption and invocation is performed
by the hardware). The ISR can be viewed as running in the foreground. It signals the
background loop (normally through some global variable) that a particular task should run.
Once the ISR completes, the background loop continues from where it was interrupted. By
looking at the global variables it detects that a particular task should run, and calls the
appropriate “sub-program”.

This model is widely (and very successfully) used on many smaller (e.g. 4 and 8 bit)
microcontroller units (MCU). Nevertheless it has a number of drawbacks:

' Task — a specific piece of work required to be done. The New Collins Concise English Dictionary.

% For high-end, high-performance systems the use of Symmetrical Multi-Processing (SMP) and multi-core designs are
used. However, these systems are beyond the scope of this paper and we shall limit our discussion to single processor
solutions.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 2

Copyright © Feabhas Ltd. 1995-2010

* (Critical code that should ideally be in the “task” part has to be put in the ISRs for
performance/safety reasons, which in turn affects the overall responsiveness of the
application.

* Organising prioritisation among a number of tasks that are ready to run becomes
difficult.

* Most significantly, the tasks in the background loop operate in a “run to completion”
mode. Once a function has been called, the background loop will not run again until the
function returns. This means that the execution of the tasks is non-preemptive.

There are some alternative models to overcome the issues listed. For many companies,
though, the next natural step from a foreground/background model is to use a real-time
operating system (RTOS). The majority of RTOSs today employ a very similar model. They
support the scheduling of a number of tasks (each written as a sequential background
program). Each task is given a priority, and the RTOS uses this to schedule tasks requesting
service. Significantly, a lower priority task may be pre-empted by a higher priority task. This
means that effectively one program is halted and another started. When that one finishes, the
first one continues from where it was stopped (similar to the interrupt model). Switching
between tasks is referred to as performing a context switch.

Context switching

To understand a context switch we need to establish what is happening in a target when code
is executing. First most embedded systems have a similar architecture:
* A microcontroller unit (MCU) or microprocessor unit (MPU) containing a central
processing unit (CPU) where the algorithmic and logical operations are performed.
* Read/Write memory - RAM.
* Persistent memory - EPROM or FLASH
* Peripherals - e.g. Serial, Timers, PWM, ADC, DAC, etc.

Consider, for example, we have developed a program in C. This has its starting function
(main), and is made up of a number of further functions. Each function may consist of
parameters, local (automatic) variables and executable statements (sequence, selection,
iteration). In addition, there may be global (external) variables (which may or may not be
initialised), constants, and dynamically allocated memory3 (e.g. from malloc).

3 Though we shouldn’t be doing dynamic memory allocation in a hard real-time system.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 3

Copyright © Feabhas Ltd. 1995-2010

int a; e g .
int b = 20; Uninitialised global variables (a)
const int z = 50;

Initialised global variables (b)
int f£(int *cl, int c2)
{

int d = 0; Constants (z)

return d; parameters (c) and return value

int main(void) local variables (d and e)

{
int *e = malloc(sizeof (int)); | dynamic memory (malloc)

Program (main and f)

Figure 1 C Program Sections

When the C program is compiled and linked, memory has to be allocated for different parts of
the program (code, globals, locals, etc.). It is the linker’s responsibility to map these onto
physical addresses dictated by the hardware architecture. The sections for a C program will
normally consist of the following (linker specific names):

Memory Area Section | Section Write Initial | Contents
Name Type Operation | Value
Program area text Code Disabled Yes Stores machine codes.
Constant area .rrodata Data Disabled Yes Constant data. This section may not be

produced, especially for host
compilers (e.g. UNIX/PC)4

Initialized data | .data Data Enabled Yes Initialized global and static data.

area

Non-initialized | .bss Data Enabled No Stores global data whose initial values

data area are not specified (zero initialized). BSS
- “Block Started by Symbol”

Stack area _ _ Enabled No Required for program execution.

Dynamic Area Allocation.

Heap area Enabled No Used by a library function (malloc,
realloc, calloc, and new).
Dynamic Area Allocation.

Table 1 Linker Sections

The areas .text and .rodata should reside in ROM, all other areas in RAM5.

* This is because constants in C aren’t really constants! This is beyond the scope of this paper.
> Many systems put the stack into on-chip ram if available due to its heavy usage.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 4

Copyright © Feabhas Ltd. 1995-2010

Most modern CPUs have a similar core register set, consisting of the following:
* Program counter (PC) - holds the address of the current program instruction
* Stack pointer (SP) - holds the current address of the top of the stack
» Status register (SR) - indicates processing states (e.g. interrupt information)
* General registers (Rn) — a bank of registers used for data processing and address
calculations

Other registers may exist (floating point registers, stack limit register, etc.). The stack is
primarily used when one function calls another. When a function is called, the arguments to
the parameters must be passed. In addition, any return values must be given a placeholder to
write to. Finally, memory must be reserved for local variables. For general-purpose
programming, arguments, local variables and the return values are stored on the stack®
[LIN94]. Modern cross-compilers for MCUs will prefer to pass parameters, return values, and
place local variables in registers, where available [FUR96, HIT98, GHS99, GHS00]. Other general
registers are then used for calculations, etc.

Stack

return address
return value

arguments

local variables

Lower address

Figure 2 Function Call Stack Frame

For a sequential program (as written in C) we now have what we can refer to as a context. This
consists of all the memory areas (including heap and stack) and the register set. The values
contained are unique to this program. If we want to run two or more programs on a single
processor we need a way of saving the context of one program and swapping that for the
context of a second program without loosing information. This is referred to as a context
switch. The new (second) program will make use of all the memory areas and registers. Each
program assumes it “owns” the processor, so each program sees the context as a virtual
machine.

% This assumes stack-relative addressing, supported by most modern processors.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 5

Copyright © Feabhas Ltd. 1995-2010

To perform a context switch, therefore, we need to:
» Save the values of all registers - these are normally pushed onto the stack
» Save references to all memory sections (including the heap and stack)
* Set the values of the registers to values for the second program
* Set the references for all memory sections for the second program
* Set the program counter to point at the code for the second program and start
executing

On many processors, the simplest way of performing a context switch is by invoking a
software interrupt (SWI or Trap). This automatically stores the PC and SR onto the stack. By
manipulating the SP and returning from the interrupt, the second program can start
executing. In order to return to the original program, the steps must be performed again,
which reinstalls that saved register values, etc.

Process & Task

UNIX circa 1980 - Process

During the 1980’s UNIX became a very widespread platform for software development.

Commercial variants derive from one of two sources; AT&T’s SVR4 (System V) or UCB’s

(University of California, Berkley) 4.4BSD. Both “multi-programming” models were very
similar.

SVR4 was design as a multi-user environment. In SVR4, a program is an executable file, and a
process is an instance of the program in execution [BAC86]. The context of a process (for
SVR4) is its state, as defined by its code, the values in global user variables, the values of
processor registers it uses and the contents of the stack’. A process would also run from RAM,
i.e. all sections would reside in RAM.

SVR4 enabled multiple processes to share a single processor. This feature, at that time, was
referred to as multiprogramming or multitasking [BAC86]. Sitting at the heart of UNIX is the
kernel. The kernel schedules processes so that each gets a fair share of the CPU. This is
performed by allocation the CPU to a process for a time quantum. If the time quantum is
exceeded, the kernel pre-empts the process and performs a context switch to another waiting
for the CPU (known round-robin scheduling). The priority of a process is a function of recent
CPU usage, with processes getting a lower priority if they have recently used the CPU.

Significantly, the majority of processes were independent, and therefore UNIX implements
protection to stop one process bringing down another (by inadvertently corrupting the others
context). Absolute protection can only be achieved via hardware.

Memory Management Unit (MMU)

To achieve process independence, UNIX architectures require special hardware called a
memory management unit (MMU). This unit sits between the CPU and the memory. The MMU
uses a form of lookup table (page tables) to map the CPUs desired address (call a virtual

” There are some addition items, such as its table slot, u area, and kernel stack, which are very UNIX specific and not
necessary for the discussion here.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 6

Copyright © Feabhas Ltd. 1995-2010

address) onto a physical address in memory. Each process sees a linear virtual address
memory map based on processor size (e.g. for a 32-bit processor, a process can address 232
addresses - 4GB address range). When a context switch takes place between two processes,
the new process sees it's own 4GB virtual address space. The MMU now maps the new
processes virtual addresses onto physical addresses. Because each process must use physical
memory, the overall requirements for running all processes may exceed the actual memory
physically available. Usually a disk is used as a secondary backing store where images of
physical memory are stored and retrieved based on demands (demand-paging).

Memory

Figure 3 Memory Management Unit

As an additional protection mechanism, because of the virtual-to-physical translation using
the page tables, the MMU can also specify blocks of memory as read-only, rather than read-
write. Sections such as code and constants placed in RAM can then be protected against
accidental updates.

When a context switch takes place, the page tables the MMU is using for the current process
need saving and new page tables installing. Finally, if two process need to communicate or
share data, then explicit operating system (0S) services must be used (e.g. pipe or shared
memory) as each cannot, by default, see the same memory.

Real-Time Operating Systems circa 1980 - Task

In the early 1980’s the first of a number of successful real-time operating systems (RTOS)
started to appear, e.g. VRTX, pSOS and iRMX. Later to appear was, probably one of the best
known today, VxWorks. They all supported a form of multiprogramming (similar to UNIX),
but specifically for real-time embedded systems. The scheduling performed by the UNIX
kernel (fair-share approach) was not appropriate for systems with fixed deadlines to meet.
The RTOS programming model was referred to as multitasking.

There are a number of significant differences from the UNIX process model. First performance
is paramount (i.e. real-time). The architectures of real-time embedded systems of that period
did not support the use of an MMU for a number of reasons:

* Speed - context switch with an MMU is much slower than without one.

* Cost - many embedded systems are high volume and cost sensitive.

* Power - portable devices are very sensitive to power consumption.

Rather than developing separate C programs, a program is broken into a number of functions,
each function written as if it was a main program (i.e. sequential code), very typically made up
of an infinite loop (in most cases you do not want tasks to finish). This group of “main”
functions existed at a peer level. The unit of concurrency for all of these RTOSs (VRTX, pSOS,

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 7

Copyright © Feabhas Ltd. 1995-2010

VxWorks, iRMX) is the task, not the process. Each RTOS offers a set of APIs (application
programming interfaces) to create tasks, e.g.[LAB98]:

OSTaskCreate(task, ptos, prio)
task - address of task’s code, i.e. function name
ptos - address of the top of task’s stack
prio - task’s priority

As these tasks are developed as part of a single program, the context for a task differs from the
context of a UNIX process as follows:

* They all share the same linear physical address space

* They all share the sections .text, .data, .bss, .rodata and the heap

However, as each task is a sequential program (functions calling functions), each requires its
own stack. In addition, the register set is part of the task’s context. Performing a context
switch between two tasks is very similar to switching between two processes, but without the
MMU overhead. This, therefore, is much faster than performing a process context switch.

Another area is that the overall multiprogramming development becomes simpler (compared
to processes). Inter-task communication is performed using common memory (i.e. no address
translations to and from virtual addresses). Especially important for small real-time systems,
is easy integration with ISRs. Getting ISRs to communicate with a UNIX process is not a
straightforward task. Here, ISRs can communicate with tasks via common memory. Note,
appropriate mutual exclusion must be in place for either form of communication (task2task,
isr2task).

What also makes the RTOS so different from UNIX is the scheduling policy employed. The
majority of RTOS today still employ the same basic model; know as priority pre-emptive
scheduling. Each task is given a priority at creation, and this priority is used to determine
which task runs. A higher priority task that becomes ready to run will pre-empt a lower
priority one (forcing a context-switch). Therefore the order of scheduling, and thus the
responsiveness of the system are under the control of the programmer, not the kernel.

Nevertheless, there is one significant issue with this model; no memory protection. This
means that any task has the potential of corrupting the memory of other tasks.

Figure 4 Non memory protection between tasks

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 8

Copyright © Feabhas Ltd. 1995-2010

stack

heap

bss
.data
.rodata

Jext

This can happen quite inadvertently with problems such as a stack overrun. A stack overrun
occurs when the memory for each task’s stack is reserved as a contiguous array of blocks (e.g.
n blocks of 1Kb for n tasks). The memory for a stack from one task naturally follows on in
memory from another. If a task uses more stack than allocated for it, it will overwrite the top
of the next task’s stack. Unfortunately, this is only be discovered when the task with the
overwritten stack runs. The context switch restores the SP, and then the corrupted values on
the stack are used (e.g. a return address). The result can be quite interesting, but not what you
want!

UNIX circa 1990 - Thread

At the end of the 1980’s a number of experimental operating systems, and some commercial
ones included support for concurrent programming. The UNIX community realised that the
process structure was very “heavyweight”, in that running multiple processes to solve certain
natural concurrency challenges (e.g. interacting with slow devices, supporting multiple
windows, networking, etc.) was very expensive in terms of computing resources (CPU and
memory). The most popular mechanism was to support multiple lightweight threads within a
single address space, where a thread represented a single sequential flow of control [BIR89].

A process, therefore, becomes an overall context in which the threads run. The process itself
isn’t executable or schedulable, the threads are8. The threads within a process have their own
context, exactly the same as task in the RTOS. The difference being that a thread is running in
a virtual address space, whereas a task runs in a physical one.

This means that an operating system supporting both the process and the thread has two
different context switches:

* A context switch between two threads in the same process

* A context switch between two threads in different processes

Context switching between threads in different processes is a very expensive operation

compared to switching between threads within the same process .

The use of these two terms has led to a number of overlapping expressions:
* Lightweight thread - read thread (sometimes called a user thread)

¥ Some UNIX systems still schedule based on the process not the thread

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 9

Copyright © Feabhas Ltd. 1995-2010

* Heavyweight thread - read process with only one thread (i.e. the traditional UNIX
process)

* Process - read traditional UNIX process

* Lightweight process - read thread (sometime these only run in kernel mode)

Programming with threads is referred to as Multithreading (MT).

Standards (Open & Proprietary)

POSIX

In June 1995 the POSIX threads standard, POSIX.1c[IEE96], was ratified. POSIX (Portable
Operating System Interface?) is a set of committees in the IEEE that are concerned with
creating an API that can be common to all UNIX systems. There is a committee within POSIX
concerned with creating a standard for writing multithreaded programs. Threads in POSIX are
referred to as Pthreads. However, just to make life interesting, POSIX also defines something
calls Lightweight Processes (LWP). Pthreads are scheduled onto a LWP, and an LWP runs
within a process. Multiple Pthreads may run in an LWP, and multiple LWPs may run within a
process. It is the LWPs, not the Pthreads, which are scheduled by the POSIX kernel. However,
the Pthreads are scheduled within an LWP. LWPs allow a number of scheduling models that
suit symmetrical multiprocessor (SMP) systems [LEW98].

Microsoft WinAPI

The WinAPI (formally Win32 API) has been the primary programming interface to the
Microsoft Windows operating system family for many years. This programming model has a
very clear distinction between processes and threads [SOL98]:
* A process is an executable program, which defines initial code and data, a private
virtual address space (MMU required), and at least one thread of execution
* Athread includes the contents of a set of volatile registers, two stacks (user mode and
kernel model?), and some private storage area (used by run-time libraries).

In WinAP], the thread is the unit of execution and scheduling, not the process. The process is
just a collection of resources. On a final note, the windows interface also has Task Manager,
which of course allows you to examine processes!

OSEK/VDX

OSEK/VDX is an automotive industry standards effort to produce open systems interfaces for
vehicle electronics [c0001]. OSEK defines a number of areas, one of which is OSEK/VDX
Operating System [0SE00]. The OSEK OS is designed to require only minimum of hardware
resources (i.e. no MMU) and therefore runs even on 8 bit microcontrollers. The OSEK OS
specification clearly states that tasks are the unit of concurrency.

° I have no idea where the X comes from!
"9 UNIX also uses two stacks for user and kernel model. Entering kernel mode involves executing a specific processor
instruction. Kernel mode may also be referred to as privileged mode.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 10

Copyright © Feabhas Ltd. 1995-2010

uITRON

The ITRON Project, which grew out of work at the University of Tokyo, creates standards for
real-time operating systems used in embedded systems. The uITRON real-time kernel
specification [UIT93], which was designed for consumer products and other small-scale
embedded systems, has been implemented for numerous 8-bit, 16-bit and 32-bit MCUs.
Currently its main support is from Japanese companies (e.g. Hitachi, Fujitsu, Toshiba, NEC,
etc.), but it is aiming to get wider acceptance [TAK97].

The ITRON specification uses the term "task" refers to a unit of concurrent processing,
although it does allow for both MMU and virtual addressing support. However, it does not
distinguish between tasks with and without MMU support.

Linux

Undoubtedly, in the last couple of years there has been a tremendous growth in the popularity
of Linux, both as a development platform and a target environment. Developed by Linus
Torvalds in 1991, the original kernel was heavily influenced by Maurice Bach’s book “The
Design of the UNIX Operating Systems” [BAC86]. Much of the kernel still has its root in SVR4.

The process is the unit of execution and scheduling. However, the Linux processes share a
large portion of their kernel data structures, and may be referred to as lightweight process
[Bovo1]. Different POSIX Pthread implementations have different mappings onto the Linux
processes. Finally, processes are often called “tasks” in the Linux source code (e.g. a process
has a state which is TASK_RUNNING, TASK_STOPPED, etc.).

Modern RTOSs

So where does this leave us (exhausted, no doubt!) when discussing operating systems for
real-time embedded systems? Implementations can broadly be divided into three groups:
* 0Ssdesigned to execute without an MMU
* 0Ssthatrequire an MMU
* 0Ss that may work with or without an MMU

MMU-less

As mentioned previously, the majority of traditional RTOSs (e.g. VxWorks 5.x, pSOS, Nucleus,
uC/0S-II) were designed to operate without an MMU. This allows for very small, fast, compact
operating systems. The general term used by all of these RTOSs for the unit of concurrency is
the task. As expected, there are always exceptions to the norm, for example the RTOS ThreadX
referrers to threads and not tasks.

Many newer RTOSs for specific applications, e.g. automotive (OSEK compliant) and DSP are
designed for MMU-less systems.

All RTOSs in this area suffer from the drawback, as mentioned previously, that one task may
corrupt any memory area held in RAM (stack, heap or data) of another. A task also has the
potential to corrupt operating system structure that have to be held in RAM (e.g. the list of
tasks waiting to use the CPU - the ready list).

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 11

Copyright © Feabhas Ltd. 1995-2010

What has been changing in the last few years is that modern microcontrollers and
microprocessors are supporting on-chip MMUs. The majority of real-time applications do not
require full MMU support with virtual addresses and a secondary store. However, not having
any memory protection is a concern in any safety related application. This has lead to a
number of architectures offering a simpler form of MMU that support a memory protection
scheme call segmentation [FUR96]. Segmentation breaks the address map into segments, each
having a base address and limit. Access beyond the limit for a given segment causes an access
violation, normally resulting in a processor exception. For example, each section from a C
program (e.g. .text, .data, .stack) can be allocated their own segment. An MMU only supporting
segmentation may be referred to as a Memory Protection Unit (MPU - which can also stand
for Microprocessor Unit!). These devices are smaller, cheaper and require less power than
conventional MMUs.

MMU required

Certain operating systems require virtual addressing, thus also require an MMU. Most widely
recognised of these is Microsoft Windows NT and CE. Both require an MMU, and both have
been questioned for use in real-time systems [TIM97, TIM98].

Another widely known OS is Symbian, used in many mobile phones, especially Nokia (as
Nokia now own Symbian). This uses similar terminology to XP, in that a process is a resource
container and a thread is a unit of concurrency. Because Symbian has been designed for small
mobile devices a significant amount of emphasis is placed on understanding the performance
issues when context switching between threads in a process and across process boundaries
[TAS00].

Wind River (http://www.windriver.com) launched a new version of their VxWorks RTOS,
called VxWorks 6. VxWorks 6 is designed to work with microprocessors that have full MMUs.
VxWorks 6, however, is initially only available for certain processor architectures that have
on-board memory management units. In spite of this, VxWorks 6 still uses the term task.

With or without MMU

Probably the commercial RTOS that lead the way with memory protection for real-time
embedded system is OSE from Enea OSE Systems (http://www.enea.com). Enea introduced
their own memory management system (MMS) to take full advantage of an MMU. The OSE
RTOS can also be used without an MMU, but then suffers the same issues as any MMU-less
RTOS.

Just to add to the terminology confusion, OSE refers to its unit of concurrency as a process,
whether processes are running with or without MMU support!

Languages

So far the discussion has centred on operating system terminology, due to C being used as the
example language. C is a sequential language with no inherent support for concurrency. This
is also true of C++. Either language requires specific APIs to use any concurrency supported
by an underlying RTOS.

Certain languages support the concepts of concurrency within their semantics, most notably,
from a commercial perspective, Ada and Java.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 12

Copyright © Feabhas Ltd. 1995-2010

Ada was first introduced as a standard in 1983 and then updated in 1995. The execution of an
Ada program consists of one or more tasks. Each task represents a separate thread of control
that proceeds independently and concurrently between points where it interacts with other
tasks [ADA95]. Tasks can communicate using shared variables. This roughly aligns Ada tasks
with non-MMU RTOS tasks (from here one, an RTOS task shall mean an non-MMU RTOS task)
and POSIX threads.

The Ada specification supports a series of specialized-needs annexes that compiler vendors
may optionally support. Annex E, defines facilities for supporting distributed systems, based
on a concept called partitions. The full description of partitions is beyond the scope of this
paper, but sufficient to say, an “active” partition can control its own tasks using its own run-
time system [COH96]. The concept of a partition maps well onto a POSIX LWPs, with Ada tasks
as Pthreads.

Java, the darling of the Internet, is also positioned as a language for real-time embedded
systems!l. The Java language specification directly supports the concepts of threads. Java
threads run within a single Java program, and thus map conceptually (as expected) to POSIX
threads or RTOS tasks. Threads in separate Java programs have a defined mechanism; call
RMI (Remote Method Invocation), with which to communicate.

As stated, Ada Tasks and Java Threads map naturally onto RTOS tasks. However, this doesn’t
mean they have been mapped onto the underlying OS primitives. Both languages have their
own scheduling and dispatching algorithms (e.g. the Java Virtual Machine - JVM and the Ada
run-time system), by default these are part of the executable program.

Initially a quick and “dirty” solution a number of vendors employed to get “real-time Java”
solution to market was to run the JVM within one RTOS task [WEI98]. If done this way it leads
to a two tier scheduling system; the RTOS task scheduling and the Java thread scheduling and
neither knows about the other. This has two important consequences:
* The Java threads only run when the containing RTOS task is scheduled
* [fa]Java thread makes a call to the RTOS library, and that call blocks, all Java threads
become blocked

Of course there are now many modern languages for host based programming that also
support the concept of threads (e.g. C#, Python, Ruby, etc.).

"' We will not discuss it suitability or not here

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 13

Copyright © Feabhas Ltd. 1995-2010

Data
Acquisition
task

Real-Time Operating System

Ny

Figure 5 Mixed RTOS and JVM Environment

Real-Time XP, RTLinux and uClinux

For hard or fast real-time systems, both Windows XP and Linux have generally been classed as
unsuitable in their “vanilla” form. There are a number of variants for both OSs claiming to add
“real-time” capabilities.

Because XP is not open source, only Microsoft can modify the XP kernel. Therefore, for
another company to extend XP for real-time, a general approach is to make XP co-exist with
an RTOS. This is achieved in one of two ways:
* XP runs as a task on top of the RTOS
* The layer between XP and the hardware (called the Hardware Abstraction Layer -
HAL) is modified to intercept interrupts and allow the RTOS scheduler to run.

As Linux is open source, there have been three different approaches to give Linux real-time
capabilities:
* Modifications to the Kernel to reduce the non- preemptible parts (this can be achieved
various ways)
* Run the Linux kernel as the lowest priority task alongside RTOS tasks.
» Simplify the kernel to remove the need for an MMU

The non-MMU approach, referred to as uCLinux (http://www.uCLinux.org) has been
developed to target microcontrollers without MMU support.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 14

Copyright © Feabhas Ltd. 1995-2010

Summary

So where has this got us? Hopefully to demonstrate that there different concurrency models
we need to recognise when discussing task, threads and processes. Each one effects the
context switch times and scheduling issues of the system.

The important questions to ask of any implementation are:
* Isan MMU part of the hardware architecture?
* I[fso,is the MMU being used for just segmentation protection or full virtual addressing?
* Does the implementation language support concurrency?
* Ifso, how is this mapped onto any underlying OS primitives?
e Do two OSs co-exist, and if so how?

My own general guidance:
* Ifno MMU is present than I use the term task
* [fan MMU is present and virtual addressing is being used; thread for the schedulable
entity, process represents the resource container the threads share.

My overriding interest is to understand the impact of communication between to units of
concurrency (thus the impact on context switch) and the resource requirements. The missing
term is where we have an MMU providing memory protection without virtual addressing.
would, personally, still regard this as a task (due to the linear address map).

A As with most things, this is purely subjective and I don’t expect you to agree with me. What
is important, next time you use the phase “task”, “thread” or “process”, be clear what you
mean.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 15

Copyright © Feabhas Ltd. 1995-2010

References:

ADA95 Ada 95 Reference Manual, ANSI/ISO/IEC-8652:1995, January 1995

BAC86 BACH, Maurice | “The Design of the UNIX Operating System”, Prentice-Hall, 1986, ISBN: 0-13-
201757-1.

BIR89 BIRRELL, Andrew D “An Introduction to Programming with Threads”, System Research Center
(SRC) Report, Digital Equipment Corporation, 1989.

BOV0O1 BOVET, Daniel P. and CESATI, Marco “Understanding the Linux Kernel”, O’Reilly, 2001, ISBN: 0-
596-00002-2

COH96 COHEN, Norman H. “Ada as a second language”, McGraw Hill, 1996, ISBN: 0-07-011607-5.

Co001 COOMES, Andrew “Under the hood of an OSEK-compliant RTOS”, Embedded Systems, pp44-46,
March 2001, Vol. 5 No. 33.

LAB98 LABROSSE, Jean] “MicroC/0S-I1"”, R & D Books; 1998, ISBN: 0-87930-543-6.

LIN94 LINDEN, Peter van der “Expert C Programming”, SunSoft Press; 1994, ISBN: 0-13177-429-8.

GHS99 “Embedded ARM/Thumb Development Guide”, Green Hills Software Inc. 1999. PubID: D02B-
11199-89NG.

GHS00 “Embedded SH Development Guide”, Green Hills Software Inc. 2000. PubID: DO5B-10300-89NG.

FUR96 FURBER, Steve “ARM System Architecture”, Addison-Wesley, 1996, ISBN: 0-201-40352-8.

HIT98 “SuperH RISC engine, C/C++ Compiler User’s Manual”, Hitachi, Ltd., 1998, Ref: ADE-702-179.

IEE96 9945-1: 1996 (ISO/IEC) [IEEE/ANSI Std 1003.1, 1996 Edition] Information Technology--
Portable Operating System Interface (POSIX&)--Part 1: System Application: Program Interface
(API) [C Language] This edition incorporates extensions for realtime applications (1003.1b-1993,
1003.1i-1995) and threads (1003.1c-1995).

LEW98 LEWIS, Bil and BERG, Daniel J. “Multithreaded Programming with Pthreads”, Prentice Hall,
1998, ISBN: 0-13-680729-1.

OSEO00 OSEK/VDX Operating System Specification 2.1r1, 13 November 2000. http://www-iiit.etec.uni-
karlsruhe.de/~osek/

SOL98 SOLOMON, David A. “Inside Windows NT 2nd Edition”, Microsoft Press, 1998, ISBN: 1-57231-
677-2.

TAK97 TAKADA, Hiroaki “uITRO: A Standard Real-Time Kernel Specification for Small-Scale Embedded
Systems”, Real Time Magazine, September 1997, pp57-63.

TAS00 TASKER, Martin et al. “Professional Symbian Programming”, Wrox Press, 2000, ISBN: 1-861003-
03-X.

TIM97 TIMMERMAN, Martin “Windows NT as Real-Time OS ?”, Real Time Magazine, September 1997,
pp6-13.

TIM98 TIMMERMAN, Martin “Is Windows CE 2.0a real threat to the RTOS World?”, Real Time
Magazine, September 1998, pp20-30

UIT93 ulTRON 3.0 Specification, General Editor: Ken Sakamura, Version number: Ver 3.02.00, 1993.
http://tron.um.u-tokyo.ac.jp/TRON/ITRON /home-e.html

UML99 OMG Unified Modelling Language Specification, Version 1.3, June 1999 http://www.omg.org.

WEI98 WEINBERG, William “Real-Time Java Implementation for Embedded Environments”, Real Time

Magazine, March 1998, pp43-49.

Feabhas TASKS, THREADS AND PROCESSES, CONFUSED? 16

Copyright © Feabhas Ltd. 1995-2010

TRAINING IN REAL-TIME

EMBEDDED DEVELOPMENT

Feabhas Ltd
5 Lowesden Works
Lambourn Woodlands, Hungerford
Berkshire RG17 7RY, UK

Tel: +44(0)1488 73050
Fax: +44(0)1488 73051

Email: info@feabhas.com
Web: www.feabhas.com

FeabhaS

TASKS, THREADS AND PROCESSES, CONFUSED? 17

