
UNITY: A LIGHTWEIGHT C TEST HARNESS

FOR EMBEDDED SYSTEMS

ABSTRACT

One of the key benefits on the Agile movement is moving the test activity from test-after-construction (TAC) to

test-before-construction (TBC). However almost all current test frameworks are based around either Java or

C++. This paper introduces Unity, an open source lightweight test harness that can be used for in-target testing

of an embedded C application. This paper explains how Unity works, how to integrate it into your environment

and how to use it.

Niall Cooling

Feabhas Limited

5 Lowesden Works

Lambourn Woodlands

Hungerford, RG17 7RY, UK

skype: feabhas

twitter: @feabhas

blog.feabhas.com

linkedin: niallcooling

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011 2

1 INTRODUCTION

1.1 AGILE MOVEMENT

1.1.1 TEST DRIVEN DESIGN

The last decade of software development has seen the growth of Agile software development. Acceptance of

Agile software development has widened within application development and is now becoming accepted in

Embedded Development. However there still can be confusion as to what ‘Agile’ actually entails.

aThere are ongoing debates about the merits and shortcomings of Agile processes, but one of the major

benefits has been around the concept of Test-Driven Design (TDD) (1). TDD advocates writing test code before

application code, thus bringing all the concepts of structured testing to the average programmer (rather than

being seen as a separate activity)
1
; an alternative and less political term for this is “Test-Before-Construction”

(TBC).

1.2 TOOLS

1.2.1 XUNIT

Programmers being programmers have developed tools to automate and simplify the process of TBC. A major

part of the TBC process is the use of a test harness/framework for the running and reporting of tests.

Testing tools have existed for many years but have typically been based on the more traditional model of

“Test-After-Construction” (TAC). What makes the TBC approach different is that it is a programmatical model

developed by the programmer (i.e. they actually write the software in the same programming language they’re

testing in) as opposed to a separate toolchain and possibly a separate programming paradigm (e.g. TSL (2)).

There are now many code-driven test frameworks for all manner of languages, which collectively fall under the

umbrella term of “XUnit” (3). Their origins begin with Smalltalk but their popularity grew with the

development of the JUnit (4) framework for testing Java. Most modern languages (Python, Ruby, etc.) now

have their own test framework closely based around the ideas and concepts from JUnit.

With the popularity of Agile development and XUnit test frameworks, programmers have looked to use this

approach with older languages, most notably C++. There now exist over 20 different C++ testing frameworks

based around the XUnit model, including CppUnit (5), Google’s own C++ Testing Framework (6) and CppUTest

(7) (specifically targeted at embedded systems testing).

1.2.2 ISSUES

1
 Again, there are debates around the reality of TDD in non-trivial, non-software-only systems, but we can save

that for a later date

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011 3

However, as C is still the dominant programming language for embedded systems (8) our interest is in using a

framework to test embedded C applications. The majority of leading frameworks prove problematic when

looking at testing in the context of an embedded application. Of course it is possible to test a C program using

a C++ test framework, but this isn’t always suitable due to the change of programming paradigm or due to a

lack of compiler support.

Another problem for the embedded C programmer is that many, if not most, frameworks have been

developed by the open source community. This is not a criticism of open source, but it means these tools are

heavily dependent on the Linux operating system and the GCC toolchain. A knock-on issue is that many

frameworks are library based, which means running them in a non-GCC environment (especially with a cross-

complier) can be a frustrating, and sometimes futile, porting activity.

1.2.3 GOALS

So rather than re-inventing the wheel we were looking for a test framework with some clear goals:

o C - not C++

o Simple - ideally not library based

o Embeddable – does not require stdout, but supports redirection of output over serial port

o Small footprint – systems with small amounts (kB) of SRAM

o Not compiler-specific - works with commercial cross compilers

o Works on any OS – especially Windows

o Single toolchian – do not have to work outside the regular IDE

2 UNITY

2.1 OPTIONS FOR C

Looking around, there are a number of commercial and open source options for C-based test frameworks, with

CUnit (9) being the best known of these. However, CUnit is a classic “Linux-centric” toolset that requires the

building of a library. There are ports for Visual Studio, but no obvious support for embedded compilers.

I cannot say I have extensively looked at all the C-based test frameworks (this is not meant to be a comparison

of test frameworks), but upon discovering Unity (10) it appeared to tick all the boxes, so we started to use it in

anger.

2.2 UNITY

2.2.1 ATTRACTIONS

First and foremost, the immediate attraction of Unity is its simplicity. Embedded programmers are busy people

with constant deadlines, so I believe a crucial point for acceptance of new ideas or concepts is how easyily it

fits with the way people develop code today. Being code-based testing it means C programmers are writing

their tests in C; a point that shouldn’t be underestimated. Admittedly, an OO/C++ framework can offer a richer

feature set, but a major goal is for the programmer to embrace testing. Writing the tests in the same language

and tool environment that the development is developed in eliminates the barrier of having to ‘context switch’

to another tool and way of thinking in order to test their code.

Secondly, the code of Unity is in simple source code form, consisting of two header files and one C file. To use

Unity involves including one of the headers and setting up the compilation/build paths to link to the Unity files

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011 4

(more on this later). The code base is also compiler independent, meaning no porting activity is required to

work with any standard C compiler. Note, however, much of the automation around Unity is based on Ruby

scripts. Ruby isn’t required, but as you shall see makes Unity a really powerful test framework.

Finally, and probably its greatest attraction, is that Unity was developed by embedded C programmers (11).

2.2.2 TESTING BASICS

Before getting in to the details of Unity, is should be noted that the XUnit frameworks and their derivates are

all focused on unit testing (12). The focus of the testing is on the functionality of the application rather than

performance, stress, etc. This means invoking C function(s) via their interface (declaration) and looking for

conditions to be true or false up on executing the function(s).

The XUnit frameworks introduce (or formalize) certain concepts.

First is the four phases of a test:

o Setup

o Test – run the test

o Analyze – report on the test outcome

o Teardown

The Setup and Teardown phases are responsible for putting the test environment in to a well-known state

prior to running one or more tests so that test results are repeatable – known as the test context, or more

commonly in the Agile world, the test fixture. Depending on the framework, tests may share the same fixture,

or each test may have its own fixture. In Unity all tests share the same fixture setup and teardown.

Finally we need a Test runner, a part of the framework that executes the tests.

2.2.3 REQUIREMENTS

To explain setting up and using Unity 2.0 the examples are based on using IAR EW (13) under Windows 7.

Download the Unity zip file from Sourceforge and unzip it to a known location. I recommend, and will base my

examples on C:\unity, but the files can reside anywhere. I have found that when setting up path names and

upgrading unity the simple path makes life easier.

Once unzipped, our initial files of interest can be found under C:\unity\src. Here we will find:

o unity.c

o unity.h

o unity_internals.h

You will also find testHarness.c, but ignore that for now. We are now ready to try out Unity.

SIMULATED C PROJECT AND UNITY

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

Create a new C project (e.g. unity1) and

[IAR] To add the unity.c source file to the project, it

Select Project->New Group... and name your group (e.g. unity) then s

unity.c from the unity\src directory (e.g.

First we need to include "unity.h" in o

If we build the project at this point the compilation will fail as the project does not know the path for the unity

header file. This involves setting the C

[IAR] To add the correct path, open the project's options (ALT+F7), select "C/C++ Compiler" and select the tab

"Preprocessor". Add the unity path to the "Additional include directories:" text box (e.g.

Rebuild the project and this should now buil

Next we need to build a simple test. Create a new C file (e.g.

the following simple test code to the test file. This is using the simple Unity test to compare

Unity test functions must be of the form:

void test<the test name>(void)

Note we need to create (empty) setup and teardown functions as the unity framework expects these function

(without them it will fail to link). Save

We now need to build the simple test runner part of the

setjmp/longjmp to manage the tests, so we need to include

the reporting mechanism of Unity uses the function putchar from

this requirement for setjmp/longjmp means that on small 8

unlikely to work (check your compiler documentation).

We declare a function prototype for our test function from our test file (i.e. testWillAlwaysPass from

myTest.c). We could define a header for

(I know the extern isn't needed but it is good practice if

include it).

Unity: a lightweight c test harness for embedded systems

) and import the Unity C file into the project.

.c source file to the project, it is probably best to create a new group for the Unity files.

>New Group... and name your group (e.g. unity) then select Project->Add Files.. and select

src directory (e.g. C:\unity\src).

" in our "main.c" file.

the project at this point the compilation will fail as the project does not know the path for the unity

This involves setting the C preprocessor include path so it can see the unity header files.

To add the correct path, open the project's options (ALT+F7), select "C/C++ Compiler" and select the tab

"Preprocessor". Add the unity path to the "Additional include directories:" text box (e.g. C:

his should now build without errors if the path is set up correctly.

Next we need to build a simple test. Create a new C file (e.g. myTests.c) and add this to the project. Enter

the following simple test code to the test file. This is using the simple Unity test to compare

Unity test functions must be of the form:

void test<the test name>(void)

setup and teardown functions as the unity framework expects these function

Save the code and return to main.c.

test runner part of the Unity test harness in main.c . Unity uses

setjmp/longjmp to manage the tests, so we need to include setjmp.h from the C standard libr

Unity uses the function putchar from stdio.h (this can be redirected).

this requirement for setjmp/longjmp means that on small 8-bit processors with a hardware stack, Unity is

(check your compiler documentation).

nction prototype for our test function from our test file (i.e. testWillAlwaysPass from

). We could define a header for myTest.c but here it is just as simple to using an extern declaration

(I know the extern isn't needed but it is good practice if the prototype is from a function in another file to

5

bly best to create a new group for the Unity files.

>Add Files.. and select

the project at this point the compilation will fail as the project does not know the path for the unity

include path so it can see the unity header files.

To add the correct path, open the project's options (ALT+F7), select "C/C++ Compiler" and select the tab

C:\unity\src)

if the path is set up correctly.

) and add this to the project. Enter

the following simple test code to the test file. This is using the simple Unity test to compare two integers. All

setup and teardown functions as the unity framework expects these functions

. Unity uses

from the C standard library. By default

(this can be redirected). Note that

ors with a hardware stack, Unity is

nction prototype for our test function from our test file (i.e. testWillAlwaysPass from

but here it is just as simple to using an extern declaration

the prototype is from a function in another file to

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

Unity requires you to define a function call

following code is a minimum definition for a Unity runTest function (

TEST_PROTECT macro wraps the use of setjmp/longjmp to manage tests that fail or are aborted.

We are now in a position to run the Unity test. The output from the Unity test will now be displayed in the

Terminal I/O window.

ADDING ANOTHER TEST

Unity: a lightweight c test harness for embedded systems

Unity requires you to define a function called runTest that takes a function pointer as a parameter. The

following code is a minimum definition for a Unity runTest function (we will see the full code later

macro wraps the use of setjmp/longjmp to manage tests that fail or are aborted.

We are now in a position to run the Unity test. The output from the Unity test will now be displayed in the

6

runTest that takes a function pointer as a parameter. The

full code later). The

macro wraps the use of setjmp/longjmp to manage tests that fail or are aborted.

We are now in a position to run the Unity test. The output from the Unity test will now be displayed in the

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

To define another test the following steps are required.

First, in the test file create a new function with a new test name. The test we've shown here will fail.

Update main.c as follows

Unity: a lightweight c test harness for embedded systems

To define another test the following steps are required.

First, in the test file create a new function with a new test name. The test we've shown here will fail.

7

First, in the test file create a new function with a new test name. The test we've shown here will fail.

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

As you can see, adding new tests is a

o Write the new test of the form

o Declare the test function in

o Add RUN_TEST to the main function

Anywhere we have repetition we should look to automate

required main.c file.

INSTALLING RUBY

Installing Ruby for Windows is very straightforward thanks to

PATH environment as well.

Unity: a lightweight c test harness for embedded systems

As you can see, adding new tests is a repetitive process:

Write the new test of the form void testName(void)

in main.c

to the main function to run the test function.

we should look to automate. Unity supplies Ruby scripts to

Installing Ruby for Windows is very straightforward thanks to the Ruby Installer executable that sets up the

8

. Unity supplies Ruby scripts to auto-generate the

Ruby Installer executable that sets up the

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011 9

Once installed, open a command window and enter gem install rake at command line. Rake is Ruby’s

make and a requirement of Unity.

GENERATING TEST RUNNER

Rather then manually editing the main (test runner) file each time we add a new test, Unity uses a Ruby script

to parse the test code and automatically generate the test runner main file. To automatically generate a test

runner.c file, open a command window and navigate to the project containing the unity test file (e.g.

myTest.c from previous example).

At the command line type:

Ruby c:\unity\auto\generate_test_runner.rb myTest.c

If this runs successfully it will create a new file of the form: <test_file_name>_Runner.c

for example, from myTest.c we get myTest_Runner.c

We now need to include this in our project. If we build now we will get a link time error (duplicate definitions

for "main") as both main.c and myTest_Runner.c both define a main function. We need to

remove/exclude main.c from our build. The project should now rebuild without and errors; run the code as

before.

STUCTURE OF THE AUTO-GENERATED RUNNER FILE

The auto-generated Runner file should not be edited (as it will be overwritten when new tests are generated

and this file needs regenerating). If you look at the file there shouldn’t be anything of surprise in there. The

RUN_TEST is configured as a macro, and there are some additional items set up for reporting purposes; but all

in all it is very similar to the main.c we developed earlier.

One difference is the second parameter to the RUN_TEST macro. In our previous code we used __LINE__ just

as filler. However, the actual number supplied is the line number of the test function in myTest.c (e.g.

testWillAlwaysPass is at line 11 in myTest.c).

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

However the real benefit comes when we add a new test.

REGENERATING THE TEST RUNNER

If we now want to add a new test it involves the following steps:

1. Edit myTest.c and create test function

2. Regenerate the test runner

3. Rebuild and execute

If we add the following test to myTest.c

Run the Ruby script:

Ruby c:\unity\auto\generate_test_runner.rb myTest.c

Rebuild and run the output is:

Unity: a lightweight c test harness for embedded systems

comes when we add a new test.

T RUNNER

we now want to add a new test it involves the following steps:

and create test function

Regenerate the test runner myTest_Runner.c using the Ruby script

myTest.c

generate_test_runner.rb myTest.c

10

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

Revisiting the test runner file, myTest_Runner.c

function prototype testBinaryMatchPass

and the update of the main function to call

Depending on your environment, one further improvement can be made.

command line and auto-generate the revised test runner file each time c

environments have a “pre-build” command line option. For example

build actions. Here we can run the R

confliction between IAR and Windows UAC whic

workaround).

Unity: a lightweight c test harness for embedded systems

myTest_Runner.c the automated changes are the inclusion of the extern

function prototype testBinaryMatchPass

tion to call RUN_TEST(testBinaryMatchPass, 21).

Depending on your environment, one further improvement can be made. Remembering

the revised test runner file each time can be tedious and error

command line option. For example, in IAR EW there is the option for pre

Ruby script (though please note I have had some problems regarding

between IAR and Windows UAC which causes the pre-build to fail; I have yet to get a satisfactory

11

the automated changes are the inclusion of the extern

.

 to switch to the

an be tedious and error-prone. Many

in IAR EW there is the option for pre-

some problems regarding

build to fail; I have yet to get a satisfactory

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

2.2.4 RUNNING ON TARGET

Overall, un-optimised Unity adds about 1kB of code and about 90 bytes of data plus the standard library

requirements. In terms of running Unity

Many modern debug environments using JTAG connections

back to the debug IDE (often referred

In the target environment either semi

stdio.h. Unity allows redirection of the test summary messages (typically

function and mapping the macro UNITY_OUTPUT_CHAR

(which is included in unity.h) so define the macro before including the

Unity: a lightweight c test harness for embedded systems

Unity adds about 1kB of code and about 90 bytes of data plus the standard library

requirements. In terms of running Unity in a target system, it is pretty straightforward.

environments using JTAG connections support automatic redirection of standard I/O

referred to as semi-hosting).

mi-hosting may not be available or we want to eliminate, for size reason

stdio.h. Unity allows redirection of the test summary messages (typically to a serial port) by implementing

UNITY_OUTPUT_CHAR to it. This is managed in unity_

so define the macro before including the unity.h header.

12

Unity adds about 1kB of code and about 90 bytes of data plus the standard library

support automatic redirection of standard I/O

or we want to eliminate, for size reasons,

) by implementing a

unity_internals.h

header.

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

TESTING WITH UNITY

Unity supplies a wide range of macros for basic unit testing. Most are quite

reinventing the wheel. The list can be found in

o Simple Boolean - TEST_ASSERT_TRUE, TEST_ASSERT_FALSE

o Standard integer - TEST_ASSERT_EQUAL

o Size specific – TEST_ASSERT_EQUAL_INT8,

o Sign specific – TEST_ASSERT

o Base specific – TEST_ASSERT_EQUAL_HEX8

o Bit masks - TEST_ASSERT_BITS, TEST_ASSERT_BITS_HIGH, TEST_ASSERT_BIT_LOW

o Ranges – TEST_ASSERT_INT_WITHIN

o Arrays – TEST_ASSERT_EQUAL_INT_ARRAY

o Strings and structures – TEST_ASSERT_E

o Floating point (if enabled) –

All tests can include an extra user definable

Which is included in the output if the test fails.

An example for a simple Unity target test

lines 16 through 19 on Port 1 of an NXP LPC2129 ARM7 system. The test code checks that the appropriate bits

in the Direction register are set high after the device has been initialsed.

Unity: a lightweight c test harness for embedded systems

Unity supplies a wide range of macros for basic unit testing. Most are quite straightforward

list can be found in unity.h, and include examples such as

TEST_ASSERT_TRUE, TEST_ASSERT_FALSE

TEST_ASSERT_EQUAL, TEST_ASSERT_NOT_EQUAL

TEST_ASSERT_EQUAL_INT8, _INT16, _INT32

TEST_ASSERT_EQUAL_UINT8, _UINT16, …

TEST_ASSERT_EQUAL_HEX8, _HEX16, …

TEST_ASSERT_BITS, TEST_ASSERT_BITS_HIGH, TEST_ASSERT_BIT_LOW

TEST_ASSERT_INT_WITHIN

TEST_ASSERT_EQUAL_INT_ARRAY

TEST_ASSERT_EQUAL_PTR, _STRING, _MEMORY

– TEST_ASSERT_FLOAT_WITHIN

definable message

Which is included in the output if the test fails.

An example for a simple Unity target test is shown, where a seven segment display is being driven off GPIO

lines 16 through 19 on Port 1 of an NXP LPC2129 ARM7 system. The test code checks that the appropriate bits

in the Direction register are set high after the device has been initialsed.

13

straightforward, but still eliminate

TEST_ASSERT_BITS, TEST_ASSERT_BITS_HIGH, TEST_ASSERT_BIT_LOW

is being driven off GPIO

lines 16 through 19 on Port 1 of an NXP LPC2129 ARM7 system. The test code checks that the appropriate bits

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

3 BEYOND UNITY

3.1 ISOLATING THE UNIT UNDER

Until now we considered modules in isolation; and the units under test only have a single interface which the

test harness can exploit. In practice, modules typically communicate with other modules. The public interface

of a module is therefore the combination of:

o The Provided Interface. This is the services the module provides to its clients

o The Required Interface. This is the set of calls the module will make to its peers or subordinates in

order to fulfil its function.

One of the problems with unit testing is that it can be difficult to isolate the piece of code required for testing

(referred to as the Unit Under Test or the UUT).

For testing purposes subordinate or peer code can be replaced by

as the actual system code but provides a

response or a narrow range of responses; as long as the responses are adequate to test the behaviour of the

unit under test. The use of stubs to support higher

scaffold code. Stubs can be replaced by working code as development continues.

What happens if the unit-under-test is a control object (doesn’t return values)?

Loop Control element provides a closed

The Closed Loop Control unit requires the services of a Motor unit (for drive) a Sensor unit (for feedback) and a

Filter unit (for calculating drive signals). The four units form a hierarchical composite.

Unity: a lightweight c test harness for embedded systems

NDER TEST

Until now we considered modules in isolation; and the units under test only have a single interface which the

In practice, modules typically communicate with other modules. The public interface

s therefore the combination of:

The Provided Interface. This is the services the module provides to its clients

The Required Interface. This is the set of calls the module will make to its peers or subordinates in

problems with unit testing is that it can be difficult to isolate the piece of code required for testing

or the UUT).

For testing purposes subordinate or peer code can be replaced by stub code. The stub has the same in

as the actual system code but provides a simulation of its behaviour. Typically, a stub produces a fixed

or a narrow range of responses; as long as the responses are adequate to test the behaviour of the

The use of stubs to support higher-level code leads to them sometimes being referred to as

Stubs can be replaced by working code as development continues.

test is a control object (doesn’t return values)? In this example

provides a closed-loop control mechanism (for example, for a motor position controller).

unit requires the services of a Motor unit (for drive) a Sensor unit (for feedback) and a

nit (for calculating drive signals). The four units form a hierarchical composite.

14

Until now we considered modules in isolation; and the units under test only have a single interface which the

In practice, modules typically communicate with other modules. The public interface

The Required Interface. This is the set of calls the module will make to its peers or subordinates in

problems with unit testing is that it can be difficult to isolate the piece of code required for testing

The stub has the same interface

of its behaviour. Typically, a stub produces a fixed

or a narrow range of responses; as long as the responses are adequate to test the behaviour of the

level code leads to them sometimes being referred to as

his example the Closed

loop control mechanism (for example, for a motor position controller).

unit requires the services of a Motor unit (for drive) a Sensor unit (for feedback) and a

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

However, the interface of Closed Loop Control has only one function

parameter (position) and returns no values.

We could test Closed Loop Control with stubs for the Sensor, Motor and Filter, but what tests could we run?

Closed Loop Control is an example of where data

Given this sequence diagram showing control behaviour

only really be verified by examining how it affects its subordinates

CLOSED LOOP CONTROL

typedef float Position;

void Go_to (Position

newPos)

{

 float driveSignal = 0;

 float error = 0;

 Position currentPos;

 while (error != 0)

 {

 currentPos =

GetPosition();

 error = newPos

currentPos;

Unity: a lightweight c test harness for embedded systems

However, the interface of Closed Loop Control has only one function – Go_to(). This takes a single

parameter (position) and returns no values.

test Closed Loop Control with stubs for the Sensor, Motor and Filter, but what tests could we run?

Closed Loop Control is an example of where data-oriented testing can be of limited value.

sequence diagram showing control behaviour, the behaviour of the Closed Loop Control object can

only really be verified by examining how it affects its subordinates.

C
lo
se
d
 L
o
o
p
 C
o
n
tr
o
l

CLOSED LOOP CONTROL

Position;

void Go_to (Position

float driveSignal = 0;

float error = 0;

Position currentPos;

while (error != 0)

currentPos =

error = newPos –

15

This takes a single

test Closed Loop Control with stubs for the Sensor, Motor and Filter, but what tests could we run?

oriented testing can be of limited value.

behaviour of the Closed Loop Control object can

Sensor

Filter

Motor

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011 16

.

That is, the Closed Loop Control object is functioning correctly if it makes particular function calls, in a

particular order, and with particular values. If any of these is incorrect, then the behaviour of the Closed Loop

Control object must be incorrect. This form of testing is referred to as Behavioural Testing.

In this case we cannot substitute traditional stub objects for the Sensor, Motor and Filter objects.

3.2 STUBS WITH EXPECTATIONS

For a control-like object we must verify its behaviour from the point of view of its subordinates. That is, did

the unit under test make the correct calls to its subordinates, with the right data, at the right time?

Mock objects are an extension of traditional function stubs. A Mock object ‘stands in’ for a real module. The

Mock object has the same interface as the actual system code; and can return representative values.

However, its interface is extended with additional functions for testing purposes.

When performing behavioural testing using Mock objects, it is the Mock objects that confirm the behaviour of

the unit under test, not the test context code. The Test Context is responsible for configuring the Mock objects

and invoking the behaviour of the unit under test. The Mock objects tell the Test Context whether the unit

under test is working as expected; the Test Context merely collates the results.

A mock object can be set expectations. An expectation is a function call the mock object is expected to receive.

Expectations are set in sequential order. Expected calls can also be given expected parameters; and can even

be given a particular response to return to the caller. If a mock object has all its expectations fulfilled it passes

the test; if not all expectations have been fulfilled the unit under test must have failed.

sd Closed-Loop control [go to

pos]

Closed Loop

Control

Sensor

Filter

Go_to (newPos)

loop

currentPos

Drive (driveSignal)

GetPosition

[current != newPos]

Motor

Calc_Drive(error)

driveSignal

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

3.3 CMOCK

Unity has mocking support through CMock

mocks. CMock is a nice little extension to Unity

it so that you can easily unit test modules that rely on other modules.

First download CMock zip file from SourceForge. Unzip this to a well

docs folder you will find a brief introduction to CMock and configuration details.

all of the interesting Ruby scripts and the src directory contain

As with Unity, the cmock.c needs adding to the project and the project path needs to be setup to see

cmock.h.

To test the Go_To function, we need to create mocks for get_position, calc_drive and drive functions. These

are contained in the headers sensor.h

CREATING MOCKS

Before creating the mock objects, create a folder to store t

project files). By default the Ruby scripts use a subdirectory called "mocks".

Use the supplied Ruby scripts to create the mock files for the required headers by typing:

<header files>

e.g.

c:\cmock\lib\cmock.rb sensor.h filter.h motor.h

In the mocks subdirectory you will find a

header

Unity: a lightweight c test harness for embedded systems

Unity has mocking support through CMock (14) - a collection of files, including Ruby scripts to generate the

extension to Unity which takes your header files and creates a Mock interface for

it so that you can easily unit test modules that rely on other modules.

First download CMock zip file from SourceForge. Unzip this to a well-known location, e.g.

folder you will find a brief introduction to CMock and configuration details. The lib

of the interesting Ruby scripts and the src directory contains cmock.c and cmock.h.

As with Unity, the cmock.c needs adding to the project and the project path needs to be setup to see

To test the Go_To function, we need to create mocks for get_position, calc_drive and drive functions. These

sensor.h, filter.h and motor.h respectively.

Before creating the mock objects, create a folder to store them in (keeping them separate from

scripts use a subdirectory called "mocks".

scripts to create the mock files for the required headers by typing:

cmock.rb sensor.h filter.h motor.h

In the mocks subdirectory you will find a Mock<header>.c and Mock<header>.h file for each supplied

17

a collection of files, including Ruby scripts to generate the

takes your header files and creates a Mock interface for

known location, e.g. c:\cmock. In the

lib directory contains

.

As with Unity, the cmock.c needs adding to the project and the project path needs to be setup to see

To test the Go_To function, we need to create mocks for get_position, calc_drive and drive functions. These

hem in (keeping them separate from the main

scripts to create the mock files for the required headers by typing: cmock.rb

file for each supplied

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

USING MOCKS

Create a group in the project and add the

settings so the build knows where the mocks are

($PROJ_DIR$) so the mock files can find the original headers (e.g.

TESTING WITH MOCKS

To use the mocks we have to include the key header files required for the test

(controller_test_harness.c)

For each of our stub functions, the Ruby

original function. We can then test the ‘Go

Unity: a lightweight c test harness for embedded systems

Create a group in the project and add the (generated) mock .c files to the project. Modify the preprocessor

settings so the build knows where the mocks are ($PROJ_DIR$\mocks) and also add the project directory

an find the original headers (e.g. sensor.h)

include the key header files required for the test in our test harness file

) e.g.

s, the Ruby scripts have created mock functions based on the signature of the

We can then test the ‘Go-To’ function thus:

18

Modify the preprocessor

and also add the project directory

in our test harness file

functions based on the signature of the

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

If we build and run our test with the mocks, the output is:

The test reported that the function “get_position”, declared in

for this test to pass we have to ‘program’ the mock framework to say that we expect this function (and

calc_drive() and drive()) to be called during this test.

For each function declared in sensor.h

get_position(void) is automatically created). In addition, the mock framework creates another function

that allows us to inform it that we expect this function to be called by the test.

created, takes the form

void get_position_ExpectAndReturn(

The ‘cmock_retval’ is an argument we supply, that the stub of get_position will actually return. So here is an

example of testing ‘Go_To’ using the CMock fram

Given the earlier code, passing the Go_To function and argument of 1.0, and the said expectation, the test will

now pass.

Note that if we state we expect a function to be called and it is not, or it is called more times than expected,

both these cases will result in test failure.

times checking the algorithmic behaviour, we could write our test code thus:

Unity: a lightweight c test harness for embedded systems

If we build and run our test with the mocks, the output is:

reported that the function “get_position”, declared in sensor.h has been called (as expected), but

for this test to pass we have to ‘program’ the mock framework to say that we expect this function (and

) to be called during this test.

sensor.h a mock (stub) function is created (e.g. the stub of

is automatically created). In addition, the mock framework creates another function

it that we expect this function to be called by the test. The mock

void get_position_ExpectAndReturn(float cmock_retval)

The ‘cmock_retval’ is an argument we supply, that the stub of get_position will actually return. So here is an

ing ‘Go_To’ using the CMock framework:

the earlier code, passing the Go_To function and argument of 1.0, and the said expectation, the test will

Note that if we state we expect a function to be called and it is not, or it is called more times than expected,

result in test failure. For example, if we wanted to iterate around the loop a couple of

behaviour, we could write our test code thus:

19

has been called (as expected), but

for this test to pass we have to ‘program’ the mock framework to say that we expect this function (and

function is created (e.g. the stub of float

is automatically created). In addition, the mock framework creates another function

The mock-expectation function

The ‘cmock_retval’ is an argument we supply, that the stub of get_position will actually return. So here is an

the earlier code, passing the Go_To function and argument of 1.0, and the said expectation, the test will

Note that if we state we expect a function to be called and it is not, or it is called more times than expected,

if we wanted to iterate around the loop a couple of

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011

As you can imagine, a test could be set up using real test vectors stored in

Mocks can do a lot more than covered here (e.g. calling user

known as a wrapper). One word of warning:

dynamically-allocated memory, so may

more useful in a host environment to simulate

hardware devices themselves. In such cases, dynamic memory allocation may not be an

4 SUMMARY

Looking back at the original goals, Unity fits these perfectly:

o C - not C++

o Simple - ideally not library

o Embeddable – does not require stdout

o Small footprint – systems with small

o Not compiler-specific - work

o Works on any OS – especially

o Single toolchian – do not have to work outside the regular IDE

With the addition of CMock (and not to mention the other projects of CException and Ceed

useful and usable testing framework f

these tools and give them a try. For more information about TDD and

James Grenning’s Book ‘Test-Driven De

Unity: a lightweight c test harness for embedded systems

be set up using real test vectors stored in a file (if available).

covered here (e.g. calling user-defined code as part of the stub call

). One word of warning: mock frameworks (including CMock) are dependent on

allocated memory, so may be not be useable in smaller embedded systems. That said, mocks are

more useful in a host environment to simulate (and stub) the behaviour of low-level software, or even

In such cases, dynamic memory allocation may not be an

goals, Unity fits these perfectly:

ideally not library based

not require stdout, but supports redirection of output over serial port

systems with small amounts (kB) of SRAM

works with commercial cross compilers

especially Windows

not have to work outside the regular IDE

With the addition of CMock (and not to mention the other projects of CException and Ceed

and usable testing framework for the embedded C programmer. I would encourage

a try. For more information about TDD and Embedded C then I would recommend

Driven Development for Embedded C’ (15).

20

available).

code as part of the stub call – a concept

k) are dependent on

be not be useable in smaller embedded systems. That said, mocks are

level software, or even

In such cases, dynamic memory allocation may not be an issue.

output over serial port

With the addition of CMock (and not to mention the other projects of CException and Ceedling) we have a very

encourage you to download

then I would recommend

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011 21

BIBLIOGRAPHY

1. Beck, Kent. Test Driven Development: By Example. s.l. : Addison-Wesley Professional, 2002. 0321146530.

2. HP WinRunner. Wikipedia. [Online] http://en.wikipedia.org/wiki/HP_WinRunner.

3. Xunit. Martin Fowler. [Online] http://www.martinfowler.com/bliki/Xunit.html.

4. Resources for Test driven Development. JUnit.org. [Online] http://www.junit.org/.

5. CppUnit Wiki. sourceforge. [Online]

http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page.

6. googletest. [Online] Google. http://code.google.com/p/googletest/.

7. CppUTest Core Manual. CppUTest . [Online] http://www.cpputest.org/.

8. What languages do you use to develop software? . VDC. [Online]

http://blog.vdcresearch.com/embedded_sw/2010/09/what-languages-do-you-use-to-develop-software.html.

9. CUnit: A Unit Testing Framework for C. sourceforge. [Online] http://cunit.sourceforge.net/.

10. Unity Intro. throw the switch. [Online] http://throwtheswitch.org/white-papers/unity-intro.html.

11. Atomic Embedded. Atomic Object. [Online] http://www.atomicobject.com.

12. Unit Testing. Wikipedia. [Online] http://en.wikipedia.org/wiki/Unit_testing.

13. IAR Embedded Workbench® for ARM. IAR Systems. [Online] http://www.iar.com/website1/1.0.1.0/68/1/.

14. Cmock Intro. throw the switch. [Online] http://throwtheswitch.org/white-papers/cmock-intro.html.

15. Test Driven development for Embedded C. The Pragmatic Bookshelf. [Online] 2011.

http://pragprog.com/book/jgade/test-driven-development-for-embedded-c. ISBN: 978-1-93435-662-3.

 Unity: a lightweight c test harness for embedded systems

copyright © Feabhas Limited 2011 22

