
FeabhaS

 Page 1 of 30

The Baker’s dozen of Use Cases

Glennan Carnie

FeabhaS

 Page 2 of 30

The baker’s dozen of use cases
Use cases have become a core part of the requirements analyst’s arsenal. Used well
they can bring dramatic increases in customer satisfaction and a whole host of other
subtle benefits to software development.

The use case itself is very simple in concept: describe the functionality of the system in
terms of interactions between the system and its external interactors. The focus of the
use case is system usage, from an external perspective.

Despite this apparent simplicity, requirements analysts frequently struggle to write
coherent, consistent use cases that can be used to facilitate development. Often, the
use case analysis becomes an exercise in confusion, incomprehension and the dreaded
‘analysis paralysis’.

This paper aims to aid use case writers by presenting a set of rules to follow when
performing use case analysis. The rules are designed to avoid common pitfalls in the
analysis process and lead to a much more coherent set of requirements.

These 13 guidelines are by no means exhaustive (for example, what about ‘Abstract’
actors; or System Integrity use cases?) and I’m sure there are dozens more I could add
to the list (by all means, let me know your golden rules) The aim of writing this article
was to give beginners to use case modelling a simple framework for creating useful,
effective use cases – something I think is sorely missing.

The Baker’s Dozen can be (neatly) summed up by the following principles:

 Understand the difference between analysis and design.

 Understand the value of a model – know why to create the model, not just how.

 Understand the difference between precision and detail.

 Keep it simple; but never simplistic

FeabhaS

 Page 3 of 30

A brief overview of use cases
A use case is partial definition of a system’s functionality, described in terms of a goal
that the user of the system (called an Actor) wants to achieve. The logic behind this is
an Actor doesn’t want to use a software system just for the hell of it – the Actor wants
to achieve something. This achievement is the Actor’s goal. The system’s functionality
can be described by the complete set of use cases for the system.

A use case is described in terms of the interaction between the Actor and the system;
specifically, it is defined in terms of the information that is exchanged between the actor
and the system.

It is useful to think of a use
case in terms of scenarios.
A scenario is a particular
instance of interactions. A
scenario describes one
possible way of interacting
with the system (whilst
trying to achieve that
particular goal). When trying
to achieve their goal, the
Actor may have to make
choices. Also, things have a
habit of going wrong. Each
variation is a different
scenario. The use case,
therefore, is described by every possible scenario. Obviously, attempting to document a
use case by writing every scenario would be ludicrous for anything but the most trivial
system. The way round this is via a use case description.

A use case description is a structured English definition of all the use case steps. It can
be thought of as a blueprint for generating use case scenarios. It should be possible to
re-create any scenario from the use case specification.

In its basic form, a use case description is a series of steps showing how information is
exchanged between the Actor(s) and the system until the Actor’s goal is met. This flow
is always initiated by an Actor (we don’t really want software doing stuff of its own
accord!) This basic form is called the Basic flow. In the Basic flow nothing goes wrong
and the Actor does the most normal, obvious things (this is sometimes called the “Sunny
Day” scenario!)

However, when the Actor must make a choice, the use case description must fork – one
path for each option the Actor can make. Each of these descriptions is described in an
Optional flow (sometimes called a Sub flow).

Similarly, not everything always goes right. If there is a chance for something to go
wrong, chances are it will at some point. Typically, these conditions are not resolved by
giving the Actor an option; they happen beyond the Actor’s control. We have to record
what happens when that ‘something’ goes wrong. These descriptions are called the

Figure 1 - The basic use case diagram

FeabhaS

 Page 4 of 30

Exceptional flows.

Another very useful way of looking at a use case specification is in terms of its start and
end conditions. We can record all the possible start conditions that the system could be
in; similarly, we can identify what state we expect the world to be in after we’ve
finished. The use case steps, then, map the initial conditions to the appropriate final
conditions.

Finally, we throw in constraints. A constraint is a requirement on not what the system
does, but how it does it. A constraint may define a performance requirement, a
reliability requirement, a safety requirement, etc. Each step in the use case
specification can have one or more constraints applied to it. It is difficult to document
how the constraint manifests itself in the use case but it is easier to document what
happens when a constraint is not met. In this case the failure is treated as an
exceptional condition.

My use case is not (necessarily) your use case
Since Jacobson defined use cases back in 1992 they have been subject to a vast range of
interpretations. As Alistair Cockburn, author of Writing Effective Use Cases states:

“I have personally encountered over 18 different definitions of use case, given by
different, each expert, teachers and consultants”

I am no different: this is my personal interpretation of use case modelling and analysis.
To qualify this statement though, this methodology is based on nearly a decade of
requirements definition work on a number of high integrity projects, including military
and aerospace.

That said, techniques that work in one environment may be less effective in another. I
haven’t been fortunate enough to work in every industry sector. It may be, then, that
you disagree with some of my techniques. This is fine; I won’t think of you as a bad
person.

FeabhaS

 Page 5 of 30

The ‘rules’
Below is a set of guidelines, or rules-of-thumb. Each of the rules defines a good practice
that I recommend when creating use cases. Each rule forms a quality control on the
requirements analysis process. Ignoring a rule means there is an(other) opportunity for
mistakes to creep into your requirements.

Ignoring these rules typically leads to wasted time and effort, low quality code, late
projects, poor morale and a host of other project malaises.

This is not a complete set of rules. I have decided to focus on a manageable number.
Ten would have been ideal; but that was too few and left out some important points.
Twelve still fell short, so I decided on a ‘baker’s dozen’ – 13 rules.

RULE 1: Use Cases Aren’t Silver Bullets

There are a couple of popular misconceptions around use cases:

Misconception 1: The use cases are the requirements of the system

Contrary to what many engineers believe (and many authors have written) the
complete set of use cases do NOT constitute its full set of requirements for the system.

A use case model is an analysis tool. They are a mechanism for organising the functional
behaviour of the system and reflecting it back to the stakeholders. This is sometimes
referred to as ‘Problem Reframing’. By re-framing the requirements to are aiming to
achieve three things:

 Demonstrate you have understood the problem, as the customer perceives it.

 Capture information exchange and sequencing requirements.

 Identify any missing behaviours

In order to achieve this effectively you need to generalise and abstract the customer
requirements into something more manageable. Thus the use cases ‘reflect’ the system
requirements without actually being the system requirements.

In embedded systems design the functional behaviour is but a small part of the
requirements of the system. System developers must comply with a vast number of
other requirements, including performance, reliability, security, environmental,
useability, etc. Many of these are system qualities – that is, they apply to the system as
a whole, not just the software. Use Cases are simply not an effective tool for capturing
this information, despite attempts by several authors to incorporate them.

Misconception 2: You must always build a use case model

Engineering problems can be classified into four basic categories:

Data-oriented

In a data-oriented problem it is the information, and its relationship to other

FeabhaS

 Page 6 of 30

information, that is important.

Modal

Modal problems are characterised by having separate, distinct behaviours at
different times. Trigger events from the environment will cause the system to
change its behaviour.

Transactional

Transactional problems tend to be event-driven: A behaviour is (externally)
invoked, which either produces a result or a change in the environment.

Flow-of-materials

Problems tend to be control-oriented: data/materiel moves from ‘sources’ to
‘sinks’. Algorithms and rules control how the information is moved and
transformed.

While it’s perfectly correct to say that almost all systems have all these elements to
some extent, in most cases one of the categories tends to dominate the requirements of
the system.

Use cases are most effective when used to describe Transactional problems. Using Use
Case analysis on other types of system often yields less-useful information about the
system. In some cases Use Cases actually obfuscate the problem by attempting to re-
frame one type of problem into a Transactional problem. For example, attempting to
describe a flow-of-materials problem with use cases tends to yield trivial Use Cases and
obscures the fundamental nature of the problem by trying to re-frame ‘flows’ as
discrete ‘events’.

Use cases are a very powerful analysis tool – when used in the right way and under the
right circumstances. But they aren’t a silver bullet. Use cases don’t solve every
requirements analysis problem and they don’t necessarily suit every type of problem.

In order to use Use Cases effectively you must understand what type of problem you are
trying to solve and whether use cases are the right tool for the job.

FeabhaS

 Page 7 of 30

RULE 2: Understand your stakeholders

A Stakeholder is a person, or group of people, with a vested interest in your system.
Vested means they want something out of it – a return on their investment. That may
be money; it may be an easier life.

One of the keys to requirements analysis is understanding your stakeholders – who they
are, what they are responsible for, why they want to use your system and how it will
benefit them.

It’s important to understand (and difficult for many software engineers to accept) your
stakeholders have responsibilities above and beyond just using your product. In fact,
the only reason they are using your product is because it (should!) help them fulfil their
larger responsibilities. If your product doesn’t help your stakeholder then why should
they use it?

The first step in requirements analysis is to define your stakeholders. That definition
must include:

 A named individual responsible for the stakeholder group

 The stakeholder’s responsibilities. That is, a description of the roles, jobs, and
tasks the stakeholders have to perform everyday. If you understand a
stakeholder’s problems and needs you can define solutions that help them

 Success criteria. That is: what is a good result for this stakeholder? The success
criteria are a list of features and qualities that, if implemented, would bring
maximum benefit to the stakeholder group.

Not all stakeholders are the same. For analysis, stakeholders can be broken down into
three groups:

FeabhaS

 Page 8 of 30

Users. The users directly interact
with the system. The stakeholders
are primarily concerned with
functional behaviour and human-
centred system qualities-of-service
such as usability

Beneficiaries. The beneficiaries have
some need that the system fulfils (or
some pain that needs to be taken
away!). The beneficiaries therefore
benefit (often financially) by having
the system in place. Typically, these
stakeholders will be paying for the
system. Beneficiaries are less
interested in function and more
interested in quality-of-service –
reliability, maintainability, etc. since
if these requirements are not fulfilled
it will cost them money!

Constrainers. The constrainers place negative requirements – or design constraints – on
the system. They place limits on how the system can work how it will be developed, or
what technologies or methodologies may be used. Constrainers come in many forms –
Legislation, Standards, The Laws of physics, to name a few. The development team
itself is an important stakeholder, since it places limits on the technologies that can be
implemented (lack of skills) or timescales (lack of resource).

Not only do the different stakeholders have different viewpoints, they also have
different priorities on your project:

Beneficiaries’ concerns typically (but not always) outweigh user concerns. For example,
in the conflict between usability (a user concern) and low cost (a beneficiary concern)
who will win? Remember: He who pays the piper calls the tune…

Constrainers should over-ride beneficiaries. Legal requirements, standards
requirements, skills shortages, etc. will always supersede the desires of the other
stakeholders.

The core difference between Beneficiaries and Constrainers is that Constrainers
CANNOT be influenced – that is, you can negotiate on functional behaviours or qualities
of service, but you cannot negotiate away legal requirements or the laws of physics! A
Constrainer either exists, in which case their criteria must be met; or they are not a
Constrainer. The skill, therefore, is to reduce the number of Constrainers on a project
to open up as many different design options as possible.

Figure 2 – The stakeholder ‘onion’ hierarchy

FeabhaS

 Page 9 of 30

RULE 3: Never mix your Actors

The UML definition of an Actor is an external entity that interacts with the system under
development. In other words: it’s a stakeholder.

Having analysed all your stakeholders it’s tempting to stick them (no pun intended) as
actors on a use case diagram and start defining use cases for each.

Each set of stakeholders (Users, Beneficiaries or Constrainers) has its own set of
concerns, language and concepts:

Concerns. Each stakeholder group has a
different set of issues, problems, wants and
desires. For example, Users are interested
in functionality; Constrainers in
compliance.

Concepts. The way a system is perceived
by the stakeholders depends on their
viewpoint, their needs, their technical
background, etc. Each group’s paradigm –
their way of perceiving the system – will be
different and involve often subtly different
concepts. For example, Users may have no
concept of return-on-investment (RoI) for
the system; whereas this may be a key
concept to a Beneficiary.

Language. Just as concepts are different;
so is the language used to describe them.
In many cases, the same word is used in
different contexts to mean different things.
For example: how many different concepts
of ‘power’ can you think of? Mechanical,
physical, electrical, political…

It is vital never to mix actors from different
stakeholder groups on the same use case
diagram. Trying to mix actors leads to
ambiguity and confusion; both for the writer
and reader! The differences in concept, viewpoint and language will make the use case
almost impossible to decipher and understand.

By all means draw a separate use case diagram for each set of stakeholders. (Note:
non-User stakeholder use case descriptions is beyond the scope of this article)

Figure 3 - - Keep actors from different
stakeholders groups separate

FeabhaS

 Page 10 of 30

RULE 4: The “Famous Five” of Requirements Modelling

As I discussed in Rule 1, a common misunderstanding of use cases is that they are the
software requirements. Unfortunately, this isn’t the situation. Use cases are merely an
analysis tool – albeit a very powerful tool (when used in the right situation).

Use cases are just one technique for understanding and analysing the requirements. In
order to fully understand the requirements our use cases are going to need some
support. Use cases are just one of my “Famous Five” of requirements analysis models.

The Requirements models are:

 The Use Case model

 The System Modes model

 The Context model

 The Domain model

 The Behaviour model

Why five models? Well, each one tells me about a different aspect of the system. No
one point of view can tell me everything I need to know in order to ensure my
requirements are coherent, consistent and unambiguous.

The Use Case model is focussed on
interaction behaviour: the who, how,
what and when of interaction between
the stakeholders and the system.

Use cases focus on operational
scenarios. For some systems (especially a
lot of application software) the
(transactional) exchange of information
between the users, or other direct
interactors, and the system forms the
bulk of the software functional
requirements.

However, many embedded systems are
not user-centric, or transactional in their
behaviour (for example, a closed-loop
control mechanism). Anyone who has
attempted use case analysis on such
systems tends to find the use case model is
non-intuitive to construct; and tends not to yield very much information about the
behaviour of the software.

The System Modes model defines the temporal behaviour of the system. That is, how
the behaviour of the system changes of time, in response to external (and internal)
stimuli.

Figure 4 - The Use Case model

FeabhaS

 Page 11 of 30

The System Modes model allows the
analyst to capture when and how the
system functionality is available. The
System Modes model is a declarative
diagram, showing the behavioural
modes of the system (without saying
how the behaviour will be enacted)
and the signals or events that cause
the behaviour to change.

Application software may not be
modal: it’s either running or it’s not.
Embedded systems tend to have more
complex dynamics (I see the system
dynamics as one of the big
differentiators between embedded
software and application software).
There are typically states where the
system’s primary functionality is
available, and other states where it is
not. For example, most embedded
systems cannot provide their primary functionality when they are starting up, or
shutting down, or in a maintenance mode.

The Context model defines the physical scope of the system: what is part of the system
(under your control) and what is external to the system.

When creating
requirements it is vital to
separate the Problem
Domain (the part of the
real world where the
computer is to exert
effects) from the
Solution Domain (the
computer and its
software). In fact,
requirements should be
describe in terms of the
effects the system
should exert in the
Problem Domain (rather than how it should be designed). In addition there must be
specifications for what are called Connecting Domains – that is, how the system’s
input/output devices must behave (interface specifications).

The Context model gives a clear visual delineation of the Problem Domain (the
environment), the Solution Domain and the Connecting Domains. The software is

Figure 5 - The System Modes model

Figure 6 - The Context Model

FeabhaS

 Page 12 of 30

treated as a single black-box entity. The environment consists of the Direct Interactor
stakeholders. Each Stakeholder interacts with the system via one or more interfaces
(often called Terminators). For each element on the Context model there should be a
set of requirements. In this example I have simulated a Context Model using a SysML
Internal Block diagram.

The Domain model focuses on the information (that is, data) in the system and, more
importantly, the relationship between the information.

The domain model aids with
building a project ‘glossary’.
In any project there is a huge
amount of tacit information
about how the problem
domain operates, and the
language that is used to
describe it.

The focus of the Domain
model is understanding the
problem and describing it,
rather than specifying the
problem’s solution. Typically,
a form of entity-relationship
diagram is used. With UML, a
class diagram is used (or a
Block Definition Diagram in
SysML).

It is tempting for development teams to skip this stage; the argument being “well,
everybody knows this!” By actively and coherently modelling this information you may
well avoid implicit misunderstandings; that can cost a project dear, if found too late.

The Behavioural model captures the transformational aspects of the problem. The
Behavioural model focuses on sources and sinks of information, and what
transformations are performed by the system in between.

Although ultimately all software behaviour comes down to executing imperative code,
this should be avoided for requirements analysis. Rather, focus on declarative
statements of behaviour and where the data comes from (and goes to) rather than how
the algorithms will be implemented.

The great strength of producing multiple models of the same system is that they are
self-validating. Building a consistent set of models gives confidence that the analyst has
truly understood the problem.

Concepts defined in one model must not conflict with the same concept in another

Figure 7 - The Domain model

FeabhaS

 Page 13 of 30

model. For example, stakeholders defined in the Use Case model (its actors) must also
appear on the Context model (otherwise, how are they interfacing to the system?!);
similarly, the Use Case model should not mention any data or information that is not
captured on the Domain model.

As I wrote in Rule 1, systems tend to have a predominant characteristic – that is, they
will either be a Modal problem, a Transactional problem, a Flow-of-materials problem or
a Data-Driven problem. When you are building your models of the system one or two
diagrams will tend to give you more information than any of the others. For example, in
a data-driven problem the Domain model will probably give you more information
about the behaviour of the system than, say, the Modes model or Use Case model. The
table below gives an indication of the relative value of each of the models.

Different models will have different value, depending on the type of problem.

Figure 8 - Different models have different value, depending on the nature of the problem

FeabhaS

 Page 14 of 30

RULE 5: Focus on goals, not behaviour

There is a subtle distinction between the functional behaviour of the system and the
goals of the actors. This can cause confusion: after all, the functional behaviour of the
system must surely be the goal of the actor?

It is very common, then, for engineers to write use cases that define, and then describe,
all the functions of the system. It is very tempting to simply re-organise the software
requirements into functional areas, each one becoming a ‘use case’. Paying lip-service
to the ‘rules’ of use case modelling, these functions are organised by an actor that
triggers the behaviour.

Use Cases based on functional
requirements, rather than Actor goals.

I call these entities Design Cases to
distinguish them from use cases; and they
can be the first steps on the slippery slope
of functional decomposition (see Rule 11
for more on this)

Identifying goals requires a change in
mindset for the engineer. Instead of
asking “What functions must the system
perform?” and listing the resulting
functionality, ask: “If the system provides
this result, will this help the actor fulfil
one (or more) of their responsibilities”. If
the answer to this question is ‘yes’ you’ve
probably got a viable use case; if the
answer’s ‘no’, or you can’t answer the
question then you probably haven’t fully
understood your stakeholders or their
responsibilities.

In other words, the focus should be on the post-conditions of the use case – the state
the system will be in after the use case has completed. If the post-condition state of the
system can provide measurable benefit to the Actor then it is a valid use case.

Let’s take a look at what I consider a better Use Case model (Figure 10).

The post-conditions of the use cases (above) relate to the goals of the Actor (in this case
an Air-Traffic Control Officer). We can validate whether the post-conditions will be of
value to the Actor.

The (main success) post-condition of Land Aircraft is that one of the ATCO’s list of
aircraft (that he is responsible for) is on the ground (safely, we assume!). At this point
the aircraft is no longer the responsibility of the ATCO – one less thing for them to worry

Figure 9 - Functional use cases; or
“Design Cases”

FeabhaS

 Page 15 of 30

about. I argue that this is a condition that
is of benefit to the ATCO.

Similarly with Hand-off Aircraft. As aircraft
reach the limit of the local Air Traffic
Control (ATC) centre they are ‘handed-off’
to another ATC centre; often a major
routing centre. The post-condition for the
hand-off will be that the departing aircraft
will be (safely!) under the control of the
other ATC, and removed from the local
ATCO’s set of aircraft he is responsible for.

Receive Aircraft is the opposite side of
Hand-Off Aircraft. That is, what happens
when the ATCO has an aircraft handed
over to them from another ATC region. At
the end of the use case, the ATCO must
have complete details and control of the
received aircraft.

When an aircraft takes off, the aircraft
must be assigned to an ATCO, who is
responsible for routing it safely out of the
local ATC region. The post-condition of Take-Off Aircraft must be that the aircraft is
assigned to an ATCO and that ATCO has all required details of the aircraft’s journey.

In the last two use cases, the ATCO actually gains work to do (another extra aircraft to
monitor). The requirements of the system must ensure that when the new aircraft is
received the transfer is performed as simply, or consistently, or straightforwardly, as
possible. This is the benefit to the Actor.

While one could easily argue this is a simplistic model for Air Traffic Control it
demonstrates basing use cases on goals rather than functional behaviours. Each use
case is validated by its post-conditions, rather than its pre-conditions and behaviour.

Figure 10 – Organizing use cases by
actor goal

FeabhaS

 Page 16 of 30

RULE 6: If it’s not on the Context or Domain models, you can’t talk about it

Engineers love to solve problems. It’s what they do. A use case model though is not a
design model – it’s an analysis model. Use cases describe what the system should do,
and in what order. What use cases shouldn’t do is say how the system should achieve
these things. That’s what design is for.

Stopping analysts (particularly if they’re developers) from writing implementation
details in the use case descriptions is difficult. One safe way of doing this is to limit the
concepts written in the use case descriptions to only those defined on the Context or
Domain models

Both the Context model and Domain model describe things beyond the scope of
software implementation. That is, they describe the problem domain, not the solution
(software) domain.

The Context model defines the physical parts of the system – external systems, users,
interfaces, communication channels, etc.

The Domain model describes the informational context of the system – what artefacts
exist, are produced, are inputs or outputs; and how these elements relate to each other.

All the data in these two models will exist irrespective of what software solution is
developed. If they change then our understanding of the problem has changed.

When reviewing use cases look for concepts that are not defined on the Domain or
Context models. These concepts are very likely to be implementation details. Look for
items like ‘database’, ‘CAN bus’, ‘Hardware Abstraction Layer’, ‘Observer’, etc.

FeabhaS

 Page 17 of 30

RULE 7: Describe ALL the transactions

A use case, as the name implies, describes the usage of the system from the point of
view of some beneficiary (our Actor). This means the use case description must include
the expected behaviour of the actors as well as the expected behaviour of the system.
This can sometimes appear counter-intuitive to use case newcomers. If the use case is
the specification of the system, then surely we can’t impose requirements on our users
(the actors)?

In fact, this is not the case. What the use case describes is – as stated above – the
expected behaviour of the system. The use case describes what we (or, more correctly,
our customers) would like to happen when we use the system. It describes the typical
interactions between stakeholder and system, in order that the stakeholder achieves
their goal. If the goal of the use case is beneficial to the stakeholder (see Rule 5) then
the stakeholder has compelling reasons to behaviour as we describe in the use case.
For example, if the system requests some information from the actor it is reasonable to
expect them to respond with the information. In effect we are imposing requirements
on the stakeholder (“when the system requests information, you shall respond”). Of
course, there’s nothing to stop the obtuse user from not responding, walking away, or
doing any number of other bizarre and inexplicable things; but these behaviours are a
fantastic source of exceptional flows.

The use case description
defines the system
behaviour as a sequence of
atomic transactions
between the actors and
the system. Atomic is used
in the sense of indivisible.
This means that, in the
context of the problem
domain the transaction
cannot be broken down
into smaller transactions.
See also: Rule 9 (below)

There are four basic
transactions (See Figure
11) and the use case description will be made up of sequences of these transactions:

The actor supplies information to the system. Information could be an event
(such as the trigger event) or data (or both).

The system does some work. Remember to describe the results of the work,
not how the result is achieved

The system supplies information to the actor. Again, this could be requests for
information, output signals, etc.

The actor does some work. As mentioned above this is unenforceable, but
reasonable behaviour on the part of the actor.

Figure 11 - Use case descriptions are a sequence of
transactions between the actor and the system.

FeabhaS

 Page 18 of 30

Writing style

I suggest writing each transaction in a simple, semi-formal, declarative style. For
transactions involving information exchange into or out of the system (that is, ‘Actor
supplies information’; ‘The system supplies information to the actor’) I use the following
style:

[Source] [Action] [Object] [Target]

For example: “The Navigator supplies the Airfield Altitude to the NAV/WAS
system”

Source: The Navigator

Action: Supplies

Object: Airfield Altitude

Target: NAV/WAS System

For descriptions of work being done (either by the system or by the actor) I use the
following form:

[Subject] [Action] [Object] [Constraint]

For example: “The ARS rewinds the hose at 5 ft/s +/- 0.5 ft/s”

Subject: The ARS

Action: Rewinds

Object: The Hose

Constraint: 5 ft/s +/-0.5 ft/s

If a transaction contains more than 3 punctuation marks it’s probably too complicated
and should be restructured to make its meaning better understood.

Weak phrases

Weak phrases make for comfortable reading of a use case but are apt to cause
uncertainty and leave room for multiple interpretations.

Use of phrases such as “adequate” and “as appropriate” indicate that what is required is
either defined elsewhere or, worse, that the requirement is open to subjective
interpretation. Phrases such as “but not limited to” and “as a minimum” suggest that
the requirement hasn’t yet been fully defined.

FeabhaS

 Page 19 of 30

Typical weak phrases include:

 As applicable

 As appropriate

 But not limited to…

 Effective

 Normal

 Timely

 Minimize

 Maximize

 Rapid

 User-friendly

 Easy

 Sufficient

 Adequate

 Quick

The truth is, in general engineers have poor writing skills. By providing a framework for
how use cases should be written you are limiting the scope for ambiguity, wooliness and
inconsistency.

FeabhaS

 Page 20 of 30

RULE 8: Don’t describe the user interface

For many users the user interface is the system. Prototypes and mock-ups of the man-
machine interface (MMI) are a fantastic way of eliciting requirements and use case
behaviours from your stakeholders. And when defining use case descriptions adding
MMI ‘screenshots’ and images can help illuminate the behaviour of the system to your
customers.

Figure 12 - Use the User Interface to drive the requirements analysis

It is very tempting to describe use case transactions in terms of MMI elements, in an
attempt to make them more understandable to the customer. However, be aware: this
is a very high maintenance solution. The one thing that can almost be guaranteed in the
design of any system is that the MMI will change. A lot. By writing your use case
descriptions in terms of user interface elements you will be constantly going back and
revising your use case text (and reviewing, and doing impact analysis… you do these,
don’t you?!)

To minimise the maintenance effort of a regularly-changing user interface we must
uncouple the user interface from the functionality of the system. We must separate the
effects of information flowing into and out of the system – What the information
content is and how the system responds to it – from the presentation of that
information to the user.

The use case description defines the desired requests and responses to the system; the
MMI defines how those requests and response are manifested.

An event-mapping table can be used to map functions of the MMI (or indeed any
interface specification) to the system event (transaction) it invokes or is in response to.
Using an event-mapping table de-couples the interface from its function.

FeabhaS

 Page 21 of 30

Figure 13 - Using an event mapping to bind interface elements to system functionality

Events are typically one of the following:

COMMAND

A control input to the system
Used to control the behaviour of the system

INPUT

Normally represent a change in the environment
May be an analog or digital signal
The system may or may not respond to the change

OUTPUT

A signal to the environment from the system
Used to effect changes in the environment
May be an analogue or digital signal

STATUS

Feedback data from the system
Contains information about the current system state

The mapping table allocates some user interface operation (which could be as simple as
a drop-list selection, or as complex as a whole sequence of button pushes or mouse
clicks) onto a system behaviour.

In our simple example, pushing the big green button is our UI action. We’ve mapped
this onto the ‘START SYSTEM’ command. Similarly, when the system is ready, this
‘READY’ status event is mapped onto the illumination of the LED. Now, if the user
decides they don’t want a ‘ready’ LED but instead want a 16 x 2 character display, we
can simply re-map the ‘READY’ status event onto a displayed message (something
creative like "System Ready")

In this way you only need to change the use case description when the functionality of
the system changes (hopefully, far less often than the MMI!)

Doing this separation also alleviates that all-to-common problem of poorly-written
requirement specifications: the User Interface Specification contains half the functional
behaviour of the system; and the System Requirements Specification contains half the
user interface detail!

FeabhaS

 Page 22 of 30

RULE 9: Build yourself a data dictionary

Transactions between the actors and the system typically involve the transfer of data.
This data has to be defined somewhere. If you’ve built a Domain Model most of the
data will be identified there; but even then the class diagram is not always the most
practical place to capture the sort of information you need to record.

Another way to capture this information is in a data dictionary. This is a document that
was always written a decade or so ago but seems to have gone out of fashion in many
software development circles.

A data dictionary defines each piece of data in the system, and attributes about that
data. Typically, a data dictionary holds (but is not limited to) the following:

An Identifier. This is how the data will be referred to. Remember to use a term
that has meaning in the problem domain.

Definition. What does this data represent? (And remember: a good definition
consists of a genus – what type of thing I’m defining – and a description)

Units of measure; if applicable

Valid range; again, if applicable

Resolution. That is, what’s the smallest difference I can measure? This can
become important if your implementation may use fixed point number schemes
(for example).

This information is all vital to the developers who must design and code interfaces, etc.
but it also has benefit when writing
use case descriptions – it decouples
the behaviour of the system from its
data.

Just as we should decouple user
interface details from the use case
description (see Rule 8) so should be
decouple the data transactions.
Describing the data requirements of
a transaction in the use case
description is cumbersome and leads
to a potential maintenance problem
(what if the resolution of a data item
changes? Or its units of measure?
Ask the team that developed the
Mars Climate Orbiter about getting
units of measure confused!)

As you define your data dictionary,
you can refer to data items (by their
name) in the use case text. Use

Figure 14 - Use a data dictionary to de-
couple data items from use case

descriptions

FeabhaS

 Page 23 of 30

some typographical convention (I use italics) to identify a data item from the data
dictionary; or, you could hyperlink it.

If the data requirements change you shouldn’t need to change the use case – unless it
leads to a change in behaviour. Similarly, you don’t need to elaborately detail exception
flows for invalid data. The data dictionary defines what is valid; the use case defines
what should happen if we receive invalid data. A simple, clear separation of
responsibilities.

FeabhaS

 Page 24 of 30

RULE 10: The magical number seven, plus or minus two

Psychologist George Miller, in his seminal 1956 paper "The Magical Number Seven, Plus
or Minus Two: Some Limits on Our Capacity for Processing Information", identified a
limit on the capacity of human working memory. He found that adults have the
capability to hold between five and nine ‘chunks’ of information at any one time. A
‘chunk’ may be a number, letter, word or some other cohesive set of data.

What has this to do with use cases? One of the primary functions of writing use cases is
requirements validation – that is, are we actually building the correct system? The use
case model is a technique for presenting the system requirements such that the
customer can say either yes, we have a correct understanding of how the system should
work; or no, we have misunderstood the system.

When presenting information to our (probably non-technical) customer it makes sense
to keep the information content manageable. Try to keep the number of transactions
in any one flow (that is, a sequence of use case steps between a trigger event and a
conclusion) to between five and nine. This gives your customers the best chance of
comprehending what you’re writing.

This means that the use case stops being a list of all the system requirements and
becomes a précis of the system requirements. Each transaction may therefore equate
to more than one system requirement. In practice this is not as over-simplifying as it
sounds: requirements are often ‘clustered’ around elements of data and their
production and manipulation – effectively what each use case transaction describes.

The skill in writing good use cases is the ability to précis requirements together to
minimise the number of use case steps, without creating simplistic use cases.

The ‘seven, plus or minus two’ rule is not hard and fast; more a guideline. If your
description has ten steps, this is not a problem; however, if it has thirty then there’s a
chance you’ve over-complicated the step. The same is true at the other limit: three
steps is fine; one step means you may have over-simplified and lost detail.

FeabhaS

 Page 25 of 30

RULE 11: Don’t abuse <<include>>

A use case contains all the steps (transactions) needed to describe how the actor (our
stakeholder) achieves their goal (or doesn’t; depending on the particular conditions of
the scenario). Therefore a use case is a stand-alone entity – it encapsulates all the
behaviour necessary to describe all the possible scenarios connected to achieving a
particular end result. That’s what makes use cases such a powerful analysis tool – they
give the system’s requirements context. Use case are also an extremely useful project
management tool. By implementing a single use case you can deliver something
complete, and of value, to the customer. The system may do nothing else, but at least
the customer can solve one problem with it.

Occasionally, two use cases contain a sequence of transactions common to both sets of
scenarios. This sequence may not necessarily occur at the same point in each use case
(for example, the beginning) but will always be in the same order.

Figure 15 - Use cases sharing common behaviour

UML provides a mechanism for extracting this common information into its own use
case. The mechanism is called the «include» relationship (Figure 16). The semantics of
the «include» relationship mean that the base use cases are only complete if they fully,
and completely, contain the contents of the included use case.

This relationship can sometimes be useful, particularly if a sequence of transactions is
repeated many times.

However, misunderstanding of «include» tends to lead to a very common abuse:
functional decomposition of use cases.

Many use case modellers use the «include» relationship to split a complex use case into
a number of smaller, simpler use cases (see Figure 17). This can lead, in extreme cases,
to an explosion of use cases, with leaf-node use cases capturing trivial functional
requirements (for example “Capture button press”).

FeabhaS

 Page 26 of 30

These trivial use cases often have no
meaning to stakeholders, who
should be focussed on what they
want to happen, rather than how it
happens. Also, there is a huge
overhead is creating, reviewing and
maintaining this vast number of use
cases.

This effect is a typical symptom of
functionally-oriented use cases, or
‘Design Cases’ as I call them.

Rather worryingly, several
organisations actively promote
Design Cases for requirements
analysis. The appeal is obvious:
functional decomposition is a
familiar concept with most developers (and if it isn’t they really shouldn’t be developing
software!); and it allows the developer to settle back into the comfortable territory of
solving problems (rather than defining them)

Remember, use cases are
an analysis tool for
understanding the system.
A simple, coherent set of
use cases, reflecting the
usage of the system from
the customer’s perspective
is far more effective than
demonstrating, to the n-th
level, how the system will
operate. That’s what design
verification is for.

My advice is to avoid
«include» wherever
possible. Prefer repetition
of text within the use case
description, over trying to
identify and extract
commonality. In this way
each use case remains separate and complete; and there is no temptation to fall into
the functional decomposition trap. That way lies madness (or at least analysis
paralysis).

Figure 16 - Included use case notation (if
you must use them)

Figure 17 - Design cases in action!

FeabhaS

 Page 27 of 30

RULE 12: Avoid variations on a theme

A common affliction amongst novice use case modellers (particularly those from a
development background) is the desire to fettle the use case model – to organise it,
revise it, balance it; and generally make it look more like a design model. Unfortunately,
beyond a certain point this effort actually starts to degrade the utility and effectiveness
of the model. More and more effort is put into a model that becomes less and less
useful to the customer and the analyst.

This all-too-common situation is known as ‘Analysis Paralysis’.

I always advise, unless you can provide a really compelling reason to do otherwise avoid
associations between use cases. Yes, you might have a less optimal model, but at least
your stakeholders will find it easy (or easier) to follow. This is price you always pay with
use case associations: Elegant but complicated to understand, versus sub-optimal but
explicit. In my view explicit always wins; after all, we’re trying to understand the
problem, not design a solution.

Case in point: Use case specialisation.

In UML a use case (and indeed an actor) is a special form of classifier. One of the
properties of classifiers is that they can be specialised – that is, a new classifier may be
defined that has the properties and behaviours of the parent, but may extend or modify
these attributes. The definition of the specialised classifier is that it is also a the type of
its parent – that is, all instances of the specialised classifier form a subset of the set of
parent classifiers.

In use case terms it
means we can define
actors or use cases that
represent
specialisations of some
base behaviour. As
part of our analysis we
may choose to define
actors whose goals
form a superset of
another actor’s. For
example, we could
define an Administrator
actor as a specialisation
of a User actor. The
Administrator performs
all the functions of the User but has additional behaviours (admin tasks)

Actor specialisation is avoidable if you consider actors as roles. A role is just a set of
competencies and behaviours that can be adopted by a person (when interacting with
the system). So, when I perform everyday tasks I adopt the role of a User actor; when I
need to do an administrative task I adopt the role of an Administrator (if I’m able) This
model also means I can be an Administrator without being a User – something the

Figure 18 - Use case and Actor specialization

FeabhaS

 Page 28 of 30

specialisation model doesn’t allow.

For use cases the problem becomes more complex. Given any particular use case, what
does it mean to specialise it? A specialised use case is like a base use case, but may
have different behaviour. This complication is adding nothing to our comprehension of
the system (in fact, possibly the opposite!). Not to mention the pain you will go through
trying to explain all this to your customers!

The Liskow Substitutabiliy Principle (LSP) can help with this situation. In simple terms
the LSP says that a derived class can be substituted for a base class object if, and only if,
the derived class has no stronger pre-conditions (demands no more of the client) and
has no weaker post-conditions (delivers no less).

For use cases, this means the specialised use case must have the same pre-conditions as
the super use case (or possibly weaker). The specialised use case may override super
use case functionality (whatever that actually implies!). Finally, none of the scenarios in
the specialised use case must result in weaker post-conditions than the super use case.

This could be achieved by having a super use case with limited (or no) behaviour, strong
pre-conditions and very weak post-conditions.

However, one could reasonably argue this super use case becomes little more than a
generic place-holder and doesn’t really add much to our understanding of the system’s
(transactional) behaviour.

Use case specialisation can be avoided very simply by forking the use case with an
optional flow. For one variation take one path through the use case; for another
variation take the other. Unfortunately, this causes the use case to become more
complicated; but at the benefit of explicitness.

There are some rare cases where use case specialisation can be more explicit but these
are more the exception than the rule.

FeabhaS

 Page 29 of 30

RULE 13: Say it with more than words

Use case descriptions are most commonly written in text format (albeit often a stylised,
semi-formal style of writing). Text is a very effective method of describing the
transactional behaviour of use cases – it’s readily understandable without special
training; most engineers can produce it (although the ability to write basic prose does
seem beyond the capability of many!); and it is flexible enough to deal with complex
behaviours – for example, variable
numbers of iterations through a loop –
without becoming cumbersome.

However, this flexibility can come at
the price of precision. Sometimes, for
example in many control systems, you
have to state precisely what the
response of the system will be. Words,
in this case, are not adequate –
although I have seen requirements
engineers attempt to describe the
overshoot behaviour of a closed loop
control system in English prose!

This rule therefore should be: find the
most appropriate notation to describe
the transactions between the actors
and the system; with a corollary that
sometimes the right notation is
multiple notations. Use tables, charts,
diagrams, activity diagrams, flowcharts,
mathematical models, state charts, or
combinations of these, to describe the
behaviour. Don’t get caught up in the dogma of use cases that says the use case
description must be text. For most systems I have found that combinations of methods
work best – some transactions are best described using semi-formal text; some by state
machines; others by tables. The skill is recognising the type of transactions you are
describing and picking the appropriate method.

Figure 19 - Use the most appropriate
notation for what you are trying to

describe

FeabhaS

 Page 30 of 30

END OF DOCUMENT

