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C++: INHERITANCE, INTERFACES AND THUNKS

Abstract
Many embedded C programmers still have the misconception that C++ leads to slow, bloated
programes. This has even lead to a specific subset of the C++ standard being defined for embedded
systems (EC++). This FUD (Fear, Uncertainty and Doubt), which may have had limited foundation
over a decade ago, is misplaced for the core aspects of C++ (Classes, Inheritance and Dynamic
Polymorphism) and given a modern C++ cross-compiler it is also misplaced for the more advanced
features (templates and exception handling). In this paper we will focus on the performance and
memory of the core aspects, but specifically look at the use of multiple inheritance in an embedded
environment.
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Introduction

Today C is still the dominant programming language in embedded systems. Even with an
updated version of the C standard being published in 1999 [C99], in our experience, this has not
yet proliferated in embedded programming circles. Through this paper, any reference to C will
denote the pre-1999 version, generally know as C90 [C90]1.

The most important item to remember when looking at the performance and memory issues of
C++[C++98] is that it has its foundations in C. C was chosen for its flexibility, efficiency,
availability and portability [Str94]. The C++ complier front-end (Cfront), originally developed by
Stroustrup, output C that was then compiled into executable code. For many of the memory and
performance demands of C++ we can draw parallels with C. If you are so inclined, you can even
mimic object-oriented code in C [Coo03]. However C++ is not a pure superset of C (it was never
intended to be) and there are various well documented incompatibilities [Str97].

The Class

The C++ class is a basic extension of the C struct. The structure and size of a class is resolved at
compile-time (e.g. sizeof is a compile time result). Any non-static data access is resolved to
<object_start_address+member_offset>. For simple C++ classes, the packing and padding rules
tend to follow those well known to C programmers. Given the class declaration:

class X

{

public:
int a;
int b;
int c;

%

X x1;

x1.c=10;

Defining an object and accessing the third data member (c and assuming sizeof(int) == 4) will
evaluate to <xI address>+8.

e.g. ARM7 assembler using GHS MULTI (no optimization)

x1.c=10;

0x20080ac main+0xc: e3a0200a MOV RZ, 10 // 10 =>R2
0x20080b0 main+0x10: e59f800c LDRR8,[PC,12](&x1 (0x20080c4)) // &x1=>R8
0x20080b4 main+0x14: 5882008 STR R2,[R8,8] // R2 => R8([8]

The significant difference between a C++ class and a C struct is the ability to declare member
functions and have access specifiers (public, private, protected). Member functions differ from
normal “free” functions in that they are passed an implicit pointer to the data area of the current
object. The implicit object pointer, known as this, enables functions to access the appropriate

! For those unaware of C99, I would recommend reading Stroustrup’s article [Str02].
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objects data members. When a member function is called in the context of an object, the address
of the object is automatically passed as an argument for the this parameter. Member data access
within a member function involves this pointer dereference plus data member offset.

Therefore, the performance of a C++ member function is identical to a C function where a
pointer to a struct is passed as the first parameter, e.g.

/* C code example */ // C++ code example
typedef struct class X
{ {
int a; int a;
int b; int b;
int c; int c;
1X; public:

void set_c(int value);

b

void set_c(X *const me, int value) void X::set_c(int value)
{ {

me->c = value; this->c = value;
} }
X x1; Xx1;
set_status(&x1,10); x1.set_status(10);

Of course the significant difference between the C and C++ code is that the C code can directly
access the member (e.g. x1.c = 10), whereas the C++ code will generate a compile time error.
This enforced encapsulation is central to ensuring low coupling within a program. High coupling
is the root cause of many C programs and leads to “jenga®”2 code.

Associations

Building an object-oriented solution to a design problem involves programming up a number of
interdependent objects. These objects collaborate, by sending messages to each other, to solve
the overall problem. Messages (in sequential code) call on object’s operations which are
implemented by member functions.

If one object wants to send a message to another object then the classes must be associated (i.e.
the target object must be in scope). Associations may be unidirectional (i.e. client-server) or
bidirectional (i.e. peer-to-peer) [Figure 1].

Outstation 1 0.3 Point

Figure 1 Class Association (unidirectional)

Associations are typically implemented as member data pointers (or a reference for single fixed
associations) to the server class. The “client” object then dereferences the pointer to be able to

? http://www.hasbro.com/jenga/
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call on published member functions of the “server” object. If the client manages a number of
servers, then this is stored as a vector or array of pointers.

Inheritance

Inheritance is a cornerstone of object-oriented programming [Figure 2]. One of the major
benifits of inheritance is that a base class pointer (or reference) can point a either a base class
object or a derived class object3.

Point Conceptual Eauivalence
- hame
- on_display —
- in_alarm_state Diaital
+ inAlarm - hame
- on_display
- in_alarm_state
. - value
Diaital
+ inAlarm
- value
+ getValue
+ getValue

Figure 2 Inheritance

Derived classes are central to reusable software development. They allow a designer to define a
new class by extending the facilities of existing, proven, classes while:
(a) Not modifying the base class
(b) Replace a base class object with a derived class object
(c) Linking clients to new server object with extended functionality without any modification
to the client [Figure 3].

Point

Outstation
1 0..32 | - name

- on_display

+inAlarm

1

Diaital

- value

+ getValue

Figure 3 Association and Inheritance

Typically the data members of the derived class are appended to the memory area of the base
class. Note, however, the language standard does not define this and it is left to each compiler to
define what it considers the most optimal solution. For example, a compiler could chose to

3 It is interesting to note that Stroustrup chose the terms Base class and Derived class in preference to
the alternative superclass and subclass [EI195]
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follow the “pimpl” idiom [Sut99] for each part of the base and derived class (however I have
never seen any compiler do this).

Assuming the derived class data members are appended to the memory area of the base class
members, accessing a derived member is no different from accessing a base member (i.e.
this+data_offset). It is possible, however, that dependant on certain architectures and compilers
padding may occur between the base member data set and the derived member data set (i.e.
padding that would not have occurred if the class had been defined in its conceptual form).

e.g.

class A

{
char al;
char a2;

b
class B : public A

char b1;
char b2;
b

int main()

{

std::cout << "A " << sizeof(A) << " B " << sizeof(B) << std::endl;

}

Executing the example code usually prints “A 2 B 4”, but may display “A 2 B 6” where two bytes
have been inserted for 32-bit alignment (optimized for B pointers).

Once a derived class is define, assignment from a derived object to a base object is implicitly
supported and a base class pointer may also point at a derived object. However, the opposite is
illegal; base objects cannot be assigned to derived ones, and derived class pointers cannot point
at base objects. Finally, a derived pointer can also be assigned to a base pointer (the compiler
will do implicit casting).

Polymorphism, Overloading and Overriding
Overloading is the ability to declare multiple functions with the same name but different
signatures, e.g.

void f();
void f(int);

Where functions are overloaded the compiler must be able to determine at compile time which
functions should be called based on the type of the operands (otherwise a compiler error), e.g.

f0; // calls f()
f(10); // calls f(int)

This is referred to as early binding or static polymorphism. There is no overhead compared to
normal function calls as the function address is resolved at compile/link time. However, when a
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derived class creates its own version of a base class member function, this is referred to as
overriding.

class Base

{
public:
void display(void){
cout << “In Base” << end];

}
b

class Derived :public Base

{
public:
void display(void){
cout << “In Derived” << end];

}
b

Due to the implicit this pointer, the overridden member function can still be statically resolved
through the calling object’s type. However, when an overridden function is called through a base
class pointer the compiler cannot necessarily determine at compile time the actual type of an
object, e.g.

void show(Base *bptr)

bptr->display(); // ??? which function to call

Base *bptr = new Base;
Derived *dptr = new Derived;

bptr->display(); // Base::display(Base*)
dptr->display(); // Derived::display(Derived*)

show(bptr);
show(dptr); // ?7? which function to call

With static polymorphism the call will always resolve to Base::display(bptr), irrelevant whether
the object being pointed to is a base or derived object.

To overcome this limitation, C++ supports the concept of late binding (dynamic polymorphism).
By adding the keyword virtual to the declaration of the function in the base class, we then allow
a call to this function through a base class pointer (or reference) to be resolved at runtime (i.e.
dynamically).

class Base

{
public:
virtual void display(void){
cout << “In Base” << end];

}
b

void show(Base *bptr)

bptr->display(); // will now call either Base or Derived
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As late binding has to determine which function to call a runtime it, must, therefore have an
overhead compared to a normal member function call. It should be noted that that this overhead
may not always play a part in calling an overridden function. For example, given the following
code:

Base *bptr = new Base;
Derived *dptr = new Derived;

bptr->display();
dptr->display(); // early binding

show(bptr);
show(dptr); // late binding

The call to dptr->display() would not be late bound (as the type of dptr is in scope). For good
compilers, given the code:

Base *bptr = new Derived;
bptr->display(); // bind to Derived::display

will still early bind if it can deduce that bptr could not be modified between is initialization and
its call.

Once a class has any virtual functions, then a virtual function table (v-table or vtbl) is created for
that class. The table is essentially an array of function pointers, one for each declared virtual
function. The v-table is constructed at compile time (i.e. it is not formed at runtime). Each object,
in addition, has an attribute, call a v-table pointer (vtptr), added to its data member set. When
the complier is required to resolve a dynamic polymorphic call, it now involves:

(1) Dereferencing the this pointer to get at the object

(2) Dereferencing the v-table pointer to get to the v-table

(3) Index into the table for the appropriate function address

(4) Calling the function passing the this pointer as a parameter (remember all member

functions require a this pointer)

This resolved (C style) to “this->vtptr[n](this,..)” [Figure 4].

this

l

vtptr

Base::display

Base:

Base::vtable

<Y
0

Figure 4 Dynamic Polymorphism

The placement of the v-table pointer with the member data structure is implementation defined.
Originally compilers append it to the end of the base classes data member set. However, most
modern compilers place it as the first data member, thus offsetting all other members by the
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pointer size (e.g. four bytes on a 32-bit processor) [Lip96]. Placing the vtptr as the first member
has the advantage that the this pointer is already pointing at the vtptr, so no adjustment is
necessary during dynamic polymorphic calls. In addition the base data and derived data are still
a contiguous group which is less likely to lead to padding between within the derived class. For
example, modifying our previous example:

class A

{
char al;
char a2;
public:
virtual void f();
virtual ~AQ){}
b

class B : public A

char b1;
char b2;
b

int main()

{

std::cout << "A " << sizeof(A) << " B " << sizeof(B) << std::endl;

}

Without virtual functions and for a pair of compilers that both output “A 2 B 4”, when virtual
functions are added and they differ in their vtptr placement, then the outputs are likely to be:
“A 8 B 8” for the compiler placing the vtptr at the start [Figure 5a], and

“A 8 B 12” for the complier with the vtptr at the end of A’s data segment [Figure 5b].

< 32-bits N
viptr .?;ﬁ;? a2 | a1
b2 | b1 | a2 | al viptr
b2 | b1
(a) viptr before data (b) viptr after data

Figure 5 vtptr offset
A derived class automatically gets its own copy of the base class’s v-table (note this is a copy).
Initially this copied v-table’s entries will be pointing at all the base class virtual functions. When
a virtual function is override the entry at the appropriate index is overwritten to point at the
derived class’s version of that function. However the polymorphic call actual resolves to the
same code, i.e. “this->vtptr[n](this,..)", because, in reality, C++ cannot resolve calls at runtime as it
has no inbuilt operating system or virtual machine. Thus dynamic polymorphic function calls are
still compile time resolved except pointer manipulation is used to support indirect addressing.

As had been started, using dynamic polymorphic functions must add some overhead to using
statically resolved function calls. In addition to the actual call, the general space and time
overheads include:

» Introduction of a virtual table with an entry for each virtual function (static data)
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* Avtptrin each object (runtime data)
* Augmentation of constructor to initialize object vtptr (code + time)
* Augmentation of destructor to reset vtptr (code + time)

These are all notable, but relatively minor in most cases. One of the potential greatest overheads,
for an embedded system, is the placement of the v-tables in memory. As they are compile time
resolved, they are, in effect, constant. Thus they will, by default for most linkers, be bundled in
the const memory area. In many embedded systems this is placed in Flash memory (or EPROM).
This means that for any dynamic call, part of the function pointer dereferencing involves reads
of address information from Flash rather than RAM. This may end up being significant is any
fast-tight code. For most linkers this can resolved by specifying the table be located in RAM (but
ensure, like initialized externs, that the values are copied from Flash to RAM). There is one
potentially issue with placing the v-table in RAM; it can then be manipulated and thus lead to
program exploits [Pin04].

One other function impacted by virtual functions is the operator = (assignment). For simple
objects many compilers do the equivalent of a memcpy* (note that the standard specifies it
should be a member-by-member copy). However, as a derived object can be assigned to a base
object, if a simple memcpy was used then the base object’s vtptr would be overwritten with the
address of the derived v-table (and all manner of interesting behavior would ensue!).

Multiple Inheritance

A class can inherit from any number of base classes. The use of more than one direct base class is
typically referred to as multiple inheritance [Figure 6]. In a simple case the general behavior is
straightforward, e.g.

A B
-m_a:int -m_b:int
+ getA() :int + getB() : int

e e

Cc

Figure 6 Multiple Inheritance

class A
{
int m_a;
public:
virtual int getA(){return m_a;}

b

class B

{
int m_b;
public:

4 C standard library call
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virtual int getB(){return m_b;}

b

class C: public A, public B
{
b

In the example above, a C object can be called in the context of A’s member functions or B’s
member functions. The order in which a derived class inherits from multiple base classes is
functionally not important (except the order of construction is defined by the order of
inheritance - e.g. A will be constructed before B). However, we shall see from a performance
perspective there are differences. The actual runtime memory layout is, again, implementation
dependent, but typically the memory is laid out in the order that the classes are inherited. Given
the example above, investigation of the runtime memory would typically have m_a as the first
data member followed by m_b [Figure 7]. Taking this general case, we shall refer to the first base
class in the inheritance list (e.g. A) as the Primary Base Class (PBC) and all subsequent base
classes as Secondary Base Classes (SBC).

C::A::vtable

p

A::vtptr
— p{ int(*) (this) L—pf int A::getA(this)
o
A 0
m_a
< > C::B::vtable
B::vtptr X - - -
- » int (*) (this) » int B::getB(this)
B:: 3 0
m_b
\

Figure 7 MI Layout

Once a derived class multiply inherits, the compile must start making adjustments throughout
the code. We have already described the expected memory layout for each object type. Also, we
know, the access to member data via a member function is resolved at compile time, e.g. a
member function accessing the first member data would use <this+4> on a 32-bit machine.

As we have stated, a base class pointer can point at a derived object. This means that base class
pointers for any of the base classes can point at the same derived object. From hereon in the
paper will describe the more common implementations, but remember, all memory layout is
implementation specific. Given an object of the derived type (C), with an address (&c), we would
expect this address to be the start PBC data part, and thus the PBC’s v-table pointer. Assigning
the address of the object to an A pointer (4*) and calling any member function of A involves no
pointer adjustment.

However, if we then assign the address of the object to a SBC pointer (e.g. B*) and then call a B

member function we have a potential problem. A B member function is expecting a this pointer
that holds the address of the start of a “B” object. Accessing the first data member is resolved to
<this+4>. However, we also know that the address of the C object points at the PBC part not the
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SBC part. Thus before calling the B member function we must adjust the this pointer to correctly
align with the SBC data part (e.g. B). For example:
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Cg
A* aptr = &c;
x = aptr->getA(); // A:getA(this){return [this+4]}

B* bptr = &c;
x = bptr->getB(); // B::getB(this){return [this+4]} ????

The adjustment can be made in one of two places. First the compiler must calculate the
difference between the natural this pointer address (e.g. &c) and the start of the SBC data region.
This we can call Delta(B), and in our example is eight bytes. In the first approach the compile can
adjust the this pointer just prior to the member function call:

B::getB( (B¥*)(((char*)this)+8) ){return [this+4]}

More typically, though the compiler makes the adjustment when the SBC pointer is assigned the
address of the derived object, e.g.

B* bptr = &c; // bptr = (B¥)(((char*)&c)+8)
x = bptr->getB(); // B::getB(this){return [this+4]}

This has the advantage that the call to the SBC member function is much simpler and does not
require knowledge of the calling object.

However, a compiler will typically have to make run time adjustments when a SBC member
function is being called directly in the context of a derived object, e.g.

intx = c.getA(); // A::getA(this){return [this+4]}
inty = c.getB(); // B::getB(this+8){return [this+4]}

so it may choose to always do this pointer adjustment on function call.

MI Name Clashes

In the previous example each base class’s member function had a different name. But situations
arise where both base classes have member functions with a common name, e.g.

class A
{
int m_a;
public:
virtual int f();

b

class B
{
int m_b;
public:
virtual int f();

b

class C: public A, public B
(
b
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Given this case, a direct invocation of the member function from the derived object will cause a
compile time error, e.g.

Cg
intx = c.f(); // ERROR ambiguous A::f or B::f

This could be resolved by explicit name resolution (c.A::f()) but this is pretty ugly and indicates
poor design. Nevertheless, both functions can be invoked through appropriate base class
pointers, e.g.

A* aptr = &c;
x = aptr->f(); // Okay A::f
B* bptr = &c;
x = bptr->f(); // Okay B::f

If the clashing member functions in the base classes are both virtual functions, then it is perfectly
legal for the derived class to override both base class functions with a single function of the same
name, e.g.

class C: public A, public B
(

int m_c;
public:

virtual int f()

{

}
b

return m_c;

This removes the ambiguity and eliminates the previous error. It has the added benefit that
whether the function is invoked directly or through a base class pointer, the same function will
always execute e.g.

Cg

intx = c.f(); // OKkay C:f
A* aptr = &c;

x = aptr->f(); // Cuf

B* bptr = &c;

x = bptr->f(); // Cuf

Member data access for the derived class doesn’t change. The derived member data will be
appended either after the PBC’s data segment, or appended to the end of the overall data
segment (i.e. PBC + SBC data area). Either way, member data access in member functions is still
via a this pointer offset access. In addition the derived object will have two separate v-tables; one
from the PBC (A) and one from the SBC (B). In each inherited v-table the entry will be replaced
with the address of the derived overridden function’s address (&C::f). Assuming the object
memory layout (for a C object) is [Figure 8]:
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C::A::vtabl

A::vtptr -
. »int()()
A 0
m_a
< m_c
¢ B::vtabl
B::vtptr
¢ v » int(*)()
B: 4
m_b 0
\

Figure 8 Object Memory Layout

The access to “m_c” will be <this+8>. If the function is called dynamically through a PBC pointer
(A%), then no pointer adjustment is required.

However, we have a problem brewing. We have looked at the situation where when a member
function is called via SBC pointer (B*); the compiler must adjust the this pointer to compensate
for the derived classes this offset. So, for example:

Cg
intx = c.f();
B* bptr = &c; // B* bptr = (B¥)( ((char*)&c)+12)

However, now when we make the polymorphic call, which is going to resolve to the derived
classes function (C::f), the this pointer now is not pointing at the start of the object as expected,

e.g.

x = bptr->f(); // Opps!!! C:f(this+12)

This means the memory beyond the actual object is going to be accesses, which of course will
lead to incorrect behavior and possibly memory corruption.

So we appear to have a stalemate. One the one hand we know we have to adjust the this pointer
for SBC calls (which is likely to be done at point assignment time thus having no knowledge of
the actual call) and yet we need to readjust it back by delta(SBC) before calling the derived
member function.

One approach is to extend the v-table so each virtual function has two entries:
» the address of the function to be called
» this pointer adjustment value (-delta(SBC))

Modern compiler tend to use an alternative that doesn’t change the size of the v-table. Instead,
where this pointer adjustment is required (i.e. -delta(SBC)) then the compiler creates a small
piece of code that does the adjustment, manipulates the stacks return address (so the execution
thread can directly return from the derived function) and then calls the derived member
function (C::f) [Figure 9]. The address of this code is then inserted into the appropriate SBC v-

Feabhas C++: INHERITANCE, INTERFACES AND THUNKS 15



Copyright © Feabhas Ltd. 1995-2010

table entry (C::B::vtable). The code that does this adjustment is usually referred to as a thunk>.
Thunks naturally add both a code size and performance overhead; therefore with MI it is
advisable to make the PBC to more frequently accessed interface.

( A::vtptr

A

m_a
< m_¢ » int C::f(this) { return [this+8] }
C::B::vtable
c B::vtptr it
5 . » int(*
- 0 this = this-12

B:: 0 Return address manipulation

\ m_b Branch to C::f(this)

Figure 9 Thunk

Deadly Diamond of Death

Clearly, a base class can itself be derived from another class. So we can introduce the terms
direct base class (those that appear in our inheritance list) and indirect base class (those which
our base classes inherit from). With simple inheritance structures this is just an extension of the
rules we have followed so far. Things start to become interesting when a base class (either direct
or indirect) appears multiple times in ancestry e.g.

class A

{

// stuff
b
class B : public A {};
class C : public A {};

class D : public B, public C
{
b

Conceptually we hope for the situation of just one base class, i.e. [Figure 10].

> Apparently the term dates back to Algol60 [E1195]

Feabhas C++: INHERITANCE, INTERFACES AND THUNKS 16



Copyright © Feabhas Ltd. 1995-2010

Figure 10 Common Base Class

but what we get, by default, is [Figure 11]:

\o—{>>

:
=

D

Figure 11 Repeated MI
This has been referred to as the “deadly diamond” [Mey98] or the “diamond of death” [Sut99].

If the root base class (A) declares a function, which is then used in the context of the most
derived object (D), the code will encounter compiler errors messages about ambiguous
functions, e.g.

class A

{
private:
int m_value;
public:
int get_value(void){ return m_value; }

b
class B : public A {};
class C : public A {};

class D : public B, public C

{
public:
void show_value(void)

{
std::cout << get_value(); // ERROR!!!

}
b

error #266: "D::get_value” is ambiguous

Thinking, as there is only one root class, we can resolve the error by calling the function by fully
qualify the name with the scope resolution operator, as in:

std::cout << A::get_value();
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This, however, leads to a similar, but with a different (and slightly more confusing) error
message, e.g.

error #286: base class “A" is ambiguous

The problem can be resolved using scope resolution operator, but only by using one of the direct
base class names (even though they don’t define the function).

B::get_value() or C::get_value()

This is far from an ideal solution. Once we start constructing base classes, the problem becomes
even more apparent. For example, given:

class A
{
protected:
int m_value;
public:
A(int a): m_value(a){ cout << “A’s ctor with value “ << m_value << end]; }

b

class B: public A
{
int m_b;
public:
B(int b) : A(b), m_b(b) { cout << "B’s ctor with value “<< m_b << endl;}

class C: public A
{

int m_c;
public:
C(int c) : A(c), m_c(c) { cout <<"C’s ctor with value “<< m_c << endl;}

class D : public B, public C

{
public:
D(intb, int c) : B(b), C(c){};
b
D d1(20,30); // Create an object d1 of type D

When a D object (d1) is created, its constructor is called. This, in turn, calls its direct base class
constructors. In this example B is the PBC of D, so on D being created, B’s constructor will be
called first (ahead of C’s), with an argument of 20. However, B has its own direct base class (4),
so before B’s constructor runs, A’s constructor is called being passed the argument 20. The first
printed output is:

A’s ctor with a value of 20

Once the A constructor is complete, B’s constructor then completes, printing out:

B’s ctor with a value of 20
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Once B is fully constructed, the thread of execution returns back to D. However, D has a SBC (C)
and its constructor is called (argument 30), which in turn calls A’s constructor again (but this
time with an argument of 30), printing out:

A’s ctor with a value of 30
C’s ctor with a value of 30

Here we have the problem that A is repeated, consequently its constructor is called twice.
However, each A constructor initializes its own memory [Figure 12].

p
( B::A::m_value
B: 1
B:m_b
D: { C::A:m_value
C: 9
t C:m_c
L m_d

Figure 12 Repeated MI Memory

The keyword virtual when added to a base class specifier ensures that only one copy of the base
class is used in the derived class. e.g.

class A

{
private:
int m_value;
public:
int get_value(){ return m_value; }

class B : virtual public A {};
class C: virtual public A {};

class D : public B, public C

{
public:
void show_value(){
std::cout << get_value(); // Okay now only one version of A

}
b

So how is this resolved? There are again, a number of different approaches. The earlier
compilers solved the issues of repeated multiple inheritance by adding a pointer to the virtual

base class part in the derived object [Figure 13]. When the virtual class is repeated in the
hierarchy the pointers both point at the common base class’s data area.
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p
A A::m_value <
B: B:m_b
R
b C: { Cim_c
m_d

Figure 13 Virtual Inheritance

An alternative approach, used by many modern compilers is to utilize the v-table. Compilers use
negative relative indexes (e.g. vtable[-1]) to the store the address of the base classes part®. This
has the advantage that the object size is unaffected by virtual inheritance.

However, both D’s direct base classes (B and C) have their own direct base class. As we have
seen in the previous example, they both call the constructor for A. What value will A be
initialized with, the one passed by B’s or C’s constructor?

The answer is neither; you will get a compile time error, e.g.

error #291: no default constructor exists for class “A"
D(int b, int ¢):B(c),C(c){}
A

Huh?

To eliminate this error message, the derived class (D) has to explicitly call the repeated (and
indirect) base class’s (4) constructor, e.g.

class A
{
protected:
int m_value;
public:
A(int a): m_value(a){ cout << “A’s ctor with value “ << m_value << endl; }

b

class B: public A
{
int m_b;
public:
B(int b) : A(b), m_b(b) { cout << "B’s ctor with value “<< m_b << endl;}

class C: public A
{

int m_c;
public:
C(int c) : A(c), m_c(c) { cout << "C’s ctor with value “<< m_c << endl;}

class D : public B, public C

{
public:

6 Many compilers apply the same technique to manage RTTI
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D(int a, int b, int ) : A(a), B(b), C(c){};
b

D d1(10, 20,30); // Create an object d1 of type D

This ensures (because we have used the virtual keyword) that the constructor for A is called
once and once only (ugly but true).

This leads to one subtlety, if a B object is constructed then it must call A’s constructor. However,
if Bis constructed as part of D’s construction it must not call A’s constructor. This is, typically,
achieved through the compiler adding an additional Boolean parameter to B’s constructor (and
C’s in this case) which will flag whether to call A’s constructor.

Unique Call Path

Given the following code:

class A

{
public:
virtual void display()

{
cout << “In A\n”;
}
class B : public virtual A {};
class C : public virtual A {};

class D : public B, public C {};

And the following calls:
A* ap = new D; ap->display();
B* bp = new D; bp->display();
C*cp =new D; cp->display();
D* dp = new D; dp->display();

The output will be:
InA
InA
InA
InA

If the derived class were to override the virtual function with its own member function:
class D : public B, public C {
public:
virtual void display()
{

cout << “In D\n”;
}
b

Then for the same code we will get:
InD
InD
InD
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InD
This is our expected behavior based on everything we have discussed so far.

However, there is one case worth considering. What should the behavior be if the common base
class’s function was overridden by one the intermediate classes and not by the most derived
class? e.g.

class B : public virtual A {

public:

void display() { cout << “In B\n”; }
b

Certainly it would be logical if

A* ap = new D; ap->display();
B* bp = new D; bp->display();
D* dp = new D; dp->display();

all printed “In B” (which they do). But what about:
C* cp =new D; cp->display();

Here we have a sibling class (of B), not a direct descendent. If we have an object of that type (C)
and called the member function we will get “In A” printed. However because A is not repeated,
there can be one and only one version of a virtual function in a call tree (otherwise ambiguity
arises and subsequent compiler errors). In our example as B::display is considered “closer” to D
than 4, then it is said to dominate [E1195]. So in answer to the question, when the call is made:

cp->display();

the output is also “In B”.

Object overheads

So what are some of the overheads associated with virtual inheritance (assume 32-bit)? Given:

class A{};

class B : public virtual A{};
class C: public virtual A{};
class D : public B, public C{};

The memory requirements vary quite significantly depending on whether the compiler uses
embedded pointers to the common base class, or uses the v-table offset.
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Virtual Embedded Pointer v-table Offset
implementation
A 1 1
B 8 (4 bytes for the virtual base class pointer + base class 4
part + alignment padding)
C 8 4
D 12 (A+B+C, but A is not repeated) 8 (B::vtable & C::vtable)

Adding virtual functions to all the base classes, e.g.
class A{ public: virtual void f() {}};
class B : public virtual A{ public: virtual void g() {}};
class C: public virtual A{ public: virtual void h() {}};
class D : public B, public C{};

Virtual Embedded Pointer v-table Offset
implementation
A 4 4 (A::vtable)
B 12 (4 for the virtual base class pointer + 4 for itsown v- | 4
table pointer + base class (A) part))
C 12 4
D 20 (A+B+C, but A is not repeated) 8 (B::vtable & C::vtable)

The above tables are only looking at runtime memory and do not include the actual v-table sizes.
However, as it is unlikely to be using virtual inheritance without virtual functions, the second
table is a better comparison of the difference.

Summary

This paper has demonstrated that using the full object-oriented features of C++ (classes,
inheritance and dynamic polymorphism) introduces both memory and performance overheads.
However, these overheads, in most cases, are minimal and can be predicted. What should be
apparent is the selection of compiler will make a greater impact on memory and performance
demands than the C++ language itself. Used badly (e.g. poor use of multiple inheritance) C++ can
lead to code that is harder to maintain and debug than C. However, used well, C++ is a far safer,
robust and more extensible language than C, which should incur minimal overheads when being
compared to a well written, well structured C program.
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